1,961 research outputs found
Práctica de desarrollo de interfaces hardware/software para la monitorización del estado de un PC
Este artículo presenta una práctica laboratorio impartida
mediante una metodología de aprendizaje basado
en proyectos (ABP) [1] para dotar de la capacidad de
diseñar y desarrollar un monitor del estado de un
ordenador, integrado en un sistema empotrado que se
comunica con una aplicación de escritorio, a nuestros
alumnos de la asignatura de Diseño de Microcontroladores
(DM) en el contexto del Máster en Ingeniería
de Computadores y Redes.
Esta práctica abarca la comunicación Hardware/
Software entre un microcontrolador con un núcleo
Cortex-M4 y una aplicación software escrita en
lenguaje C# usando el entorno Visual Studio Community
2015 a través de puertos series virtuales
(VCP). Esta práctica está enfocada como un proyecto
que los alumnos han de ir realizando desde cero,
avanzando mediante la consecución de hitos, hasta
conseguir obtener un sistema final. El sistema a
desarrollar se divide en dos partes, por un lado tenemos
un PC con un sistema operativo de la familia
Windows, en el que se construye una aplicación
visual mediante Windows Forms, la cual obtiene
información del sistema de forma periódica y la envía
al microcontrolador mediante comandos usando el
puerto serie (USB o comunicación Bluetooth). Por
otro lado tenemos un microcontrolador de la familia
STM32 que dispone de un display LCD ejecutando
una plataforma completamente libre, .NET Micro
Framework, la cual recibe a través del puerto serie la
información obtenida gracias a la aplicación software
del PC y la muestra en la pantalla, obteniendo así una
herramienta de monitorización del PC sin tener que
estar conectado físicamente a éste.
El desarrollo de este tipo de proyectos se añade la
dificultad de la necesidad del uso de diferentes
herramientas para el desarrollo del firmware y del
software en paralelo, de manera incremental, y
enfocadas para ámbitos de uso muy distintos.
Esta práctica ha tenido una gran acogida por parte de los alumnos, ya que les ha servido de ejemplo del
desarrollo de firmware para un microcontrolador
usando la plataforma .NET MF y de su comunicación
con el PC por medio de una aplicación visual.This manuscript presents a practical laboratory session
imparted using a project-based learning methodology
(PBL) to provide the capacity of designing and
developing a computer status monitoring device,
integrated in an embedded system that communicates
with a desktop software tool, to our students in the
Computer Engineering Master’s Degree.
This practice session encompasses Hardware/
Software communication between a microcontroller
with a Cortex-M4 kernel and a desktop software
application through virtual COM ports (VCP)
written in C# using Visual Studio Community 2015.
This lab session is focused as a project that students
must be making from scratch by achieving and completing
some milestones to obtain a final functional
system. The project is divided into two different parts.
First, we have a Windows PC where a visual software
application that gathers information from the system
and sends it periodically to the microcontroller (USB
or Bluetooth) has to be built using Windows Forms.
On the other hand, we have a microcontroller from
the STM32 family that has a 2.4’ LCD display executing
.NET Micro Framework that receives the
information obtained from the PC through the serial
port and displays it in the screen. This way, students
create a computer status monitoring tool that does not
need to be connected physically to it to receive the
information.
The development of this project is added to the
need of using different tools for firmware and software
development, focused to very different fields of
use. This practice has been well received by the
students, because it has served as an example of the
firmware development for a microcontroller using the
.NET MF platform as well as the communication between the PC and the microcontroller using a visual
software application
Patterns of subnet usage reveal distinct scales of regulation in the transcriptional regulatory network of Escherichia coli
The set of regulatory interactions between genes, mediated by transcription
factors, forms a species' transcriptional regulatory network (TRN). By
comparing this network with measured gene expression data one can identify
functional properties of the TRN and gain general insight into transcriptional
control. We define the subnet of a node as the subgraph consisting of all nodes
topologically downstream of the node, including itself. Using a large set of
microarray expression data of the bacterium Escherichia coli, we find that the
gene expression in different subnets exhibits a structured pattern in response
to environmental changes and genotypic mutation. Subnets with less changes in
their expression pattern have a higher fraction of feed-forward loop motifs and
a lower fraction of small RNA targets within them. Our study implies that the
TRN consists of several scales of regulatory organization: 1) subnets with more
varying gene expression controlled by both transcription factors and
post-transcriptional RNA regulation, and 2) subnets with less varying gene
expression having more feed-forward loops and less post-transcriptional RNA
regulation.Comment: 14 pages, 8 figures, to be published in PLoS Computational Biolog
Measurements of the branching fractions of B+→ppK+ decays
The branching fractions of the decay B+ → pp̄K+ for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb experiment. The total branching fraction, its charmless component Mpp̄ < 2.85 GeV/c2 and the branching fractions via the resonant cc̄ states η c(1S) and ψ(2S) relative to the decay via a J/ψ intermediate state are [Equation not available: see fulltext.] Upper limits on the B + branching fractions into the η c(2S) meson and into the charmonium-like states X(3872) and X(3915) are also obtained
Differential branching fraction and angular analysis of decays
The differential branching fraction of the rare decay is measured as a function of , the
square of the dimuon invariant mass. The analysis is performed using
proton-proton collision data, corresponding to an integrated luminosity of 3.0
\mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is
observed in the region below the square of the mass. Integrating
over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as
d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+
0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1},
where the uncertainties are statistical, systematic and due to the
normalisation mode, , respectively.
In the intervals where the signal is observed, angular distributions are
studied and the forward-backward asymmetries in the dimuon ()
and hadron () systems are measured for the first time. In the
range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} =
-0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} =
-0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde
Study of and decays and determination of the CKM angle
We report a study of the suppressed and favored
decays, where the neutral meson is detected
through its decays to the and CP-even and
final states. The measurement is carried out using a proton-proton
collision data sample collected by the LHCb experiment, corresponding to an
integrated luminosity of 3.0~fb. We observe the first significant
signals in the CP-even final states of the meson for both the suppressed
and favored modes, as well as
in the doubly Cabibbo-suppressed final state of the decay. Evidence for the ADS suppressed decay , with , is also presented. From the observed
yields in the , and their
charge conjugate decay modes, we measure the value of the weak phase to be
. This is one of the most precise
single-measurement determinations of to date.Comment: 22 pages, 9 figures; All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm
A study of violation in () with the modes , and
An analysis of the decays of and is presented in which the meson is reconstructed in
the three-body final states , and . Using data from LHCb corresponding to an integrated luminosity of
3.0 fb of collisions, measurements of several observables are
performed. First observations are obtained of the suppressed ADS decay and the quasi-GLW decay . The results are interpreted in the
context of the unitarity triangle angle and related parameters
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
Study of B0(s)→K0Sh+h′− decays with first observation of B0s→K0SK±π∓ and B0s→K0Sπ+π−
A search for charmless three-body decays of B 0 and B0s mesons with a K0S meson in the final state is performed using the pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV recorded by the LHCb experiment. Branching fractions of the B0(s)→K0Sh+h′− decay modes (h (′) = π, K), relative to the well measured B0→K0Sπ+π− decay, are obtained. First observation of the decay modes B0s→K0SK±π∓ and B0s→K0Sπ+π− and confirmation of the decay B0→K0SK±π∓ are reported. The following relative branching fraction measurements or limits are obtained B(B0→K0SK±π∓)B(B0→K0Sπ+π−)=0.128±0.017(stat.)±0.009(syst.), B(B0→K0SK+K−)B(B0→K0Sπ+π−)=0.385±0.031(stat.)±0.023(syst.), B(B0s→K0Sπ+π−)B(B0→K0Sπ+π−)=0.29±0.06(stat.)±0.03(syst.)±0.02(fs/fd), B(B0s→K0SK±π∓)B(B0→K0Sπ+π−)=1.48±0.12(stat.)±0.08(syst.)±0.12(fs/fd)B(B0s→K0SK+K−)B(B0→K0Sπ+π−)∈[0.004;0.068]at90%CL
Model-independent evidence for contributions to decays
The data sample of decays acquired with the
LHCb detector from 7 and 8~TeV collisions, corresponding to an integrated
luminosity of 3 fb, is inspected for the presence of or
contributions with minimal assumptions about
contributions. It is demonstrated at more than 9 standard deviations that
decays cannot be described with
contributions alone, and that contributions play a dominant role in
this incompatibility. These model-independent results support the previously
obtained model-dependent evidence for charmonium-pentaquark
states in the same data sample.Comment: 21 pages, 12 figures (including the supplemental section added at the
end
- …
