1,422 research outputs found
Interferometric Visibility of a Scintillating Source: Statistics at the Nyquist Limit
We derive the distribution of interferometric visibility for a source
exhibiting strong diffractive scintillation, with particular attention to
spectral resolution at or near the Nyquist limit. We also account for arbitrary
temporal averaging, intrinsic variability within the averaging time, and the
possibility of spatially-extended source emission. We demonstrate that the
interplay between scintillation and self-noise induces several remarkable
features, such as a broad "skirt" in the visibility distribution. Our results
facilitate the interpretation of interferometric observations of pulsars at
meter and decimeter wavelengths.Comment: 14 Pages, 5 Figures, accepted for publication in Ap
Sub-Microarcsecond Astrometry and New Horizons in Relativistic Gravitational Physics
Attaining the limit of sub-microarcsecond optical resolution will completely
revolutionize fundamental astrometry by merging it with relativistic
gravitational physics. Beyond the sub-microarcsecond threshold, one will meet
in the sky a new population of physical phenomena caused by primordial
gravitational waves from early universe and/or different localized astronomical
sources, space-time topological defects, moving gravitational lenses, time
variability of gravitational fields of the solar system and binary stars, and
many others. Adequate physical interpretation of these yet undetectable
sub-microarcsecond phenomena can not be achieved on the ground of the
"standard" post-Newtonian approach (PNA), which is valid only in the near-zone
of astronomical objects having a time-dependent gravitational field. We
describe a new, post-Minkowskian relativistic approach for modeling astrometric
observations having sub-microarcsecond precision and briefly discuss the
light-propagation effects caused by gravitational waves and other phenomena
related to time-dependent gravitational fields. The domain of applicability of
the PNA in relativistic space astrometry is explicitly outlined.Comment: 5 pages, the talk given at the IAU Colloquium 180 "Towards Models and
Constants for Sub-Microarcsecond Astrometry", Washington DC, March 26 - April
2, 200
A Ray-Tracing Model of the Vela Pulsar
In the relativistic plasma surrounding a pulsar, a subluminal ordinary-mode
electromagnetic wave will propagate along a magnetic field line. After some
distance, it can break free of the field line and escape the magnetosphere to
reach an observer. We describe a simple model of pulsar radio emission based on
this scenario and find that applying this model to the case of the Vela pulsar
reproduces qualitative characteristics of the observed Vela pulse profile.Comment: 23 pages, 9 figures, accepted for publication in Ap
Theory and Simulations of Refractive Substructure in Resolved Scatter-Broadened Images
At radio wavelengths, scattering in the interstellar medium distorts the
appearance of astronomical sources. Averaged over a scattering ensemble, the
result is a blurred image of the source. However, Narayan & Goodman (1989) and
Goodman & Narayan (1989) showed that for an incomplete average, scattering
introduces refractive substructure in the image of a point source that is both
persistent and wideband. We show that this substructure is quenched but not
smoothed by an extended source. As a result, when the scatter-broadening is
comparable to or exceeds the unscattered source size, the scattering can
introduce spurious compact features into images. In addition, we derive
efficient strategies to numerically compute realistic scattered images, and we
present characteristic examples from simulations. Our results show that
refractive substructure is an important consideration for ongoing missions at
the highest angular resolutions, and we discuss specific implications for
RadioAstron and the Event Horizon Telescope.Comment: Equation numbering in appendix now matches published version. Two
minor typos correcte
Size of the Vela Pulsar's Emission Region at 18 cm Wavelength
We present measurements of the linear diameter of the emission region of the
Vela pulsar at observing wavelength lambda=18 cm. We infer the diameter as a
function of pulse phase from the distribution of visibility on the
Mopra-Tidbinbilla baseline. As we demonstrate, in the presence of strong
scintillation, finite size of the emission region produces a characteristic
W-shaped signature in the projection of the visibility distribution onto the
real axis. This modification involves heightened probability density near the
mean amplitude, decreased probability to either side, and a return to the
zero-size distribution beyond. We observe this signature with high statistical
significance, as compared with the best-fitting zero-size model, in many
regions of pulse phase. We find that the equivalent full width at half maximum
of the pulsar's emission region decreases from more than 400 km early in the
pulse to near zero at the peak of the pulse, and then increases again to
approximately 800 km near the trailing edge. We discuss possible systematic
effects, and compare our work with previous results
Optimal Correlation Estimators for Quantized Signals
Using a maximum-likelihood criterion, we derive optimal correlation
strategies for signals with and without digitization. We assume that the
signals are drawn from zero-mean Gaussian distributions, as is expected in
radio-astronomical applications, and we present correlation estimators both
with and without a priori knowledge of the signal variances. We demonstrate
that traditional estimators of correlation, which rely on averaging products,
exhibit large and paradoxical noise when the correlation is strong. However, we
also show that these estimators are fully optimal in the limit of vanishing
correlation. We calculate the bias and noise in each of these estimators and
discuss their suitability for implementation in modern digital correlators.Comment: 8 Pages, 3 Figures, Submitted to Ap
VLBI Imaging of Water Maser Emission from the Nuclear Torus of NGC 1068
We have made the first VLBI synthesis images of the H2O maser emission
associated with the central engine of the Seyfert galaxy NGC 1068. Emission
extends about +/-300 km/s from the systemic velocity. Images with
submilliarcsecond angular resolution show that the red-shifted emission lies
along an arc to the northwest of the systemic emission. (The blue-shifted
emission has not yet been imaged with VLBI.) Based on the maser velocities and
the relative orientation of the known radio jet, we propose that the maser
emission arises on the surface of a nearly edge-on torus, where physical
conditions are conducive to maser action. The visible part of the torus is
axially thick, with comparable height and radius. The velocity field indicates
sub-Keplerian differential rotation around a central mass of about 1e7 Msun
that lies within a cylindrical radius of about 0.65 pc. The estimated
luminosity of the central engine is about 0.5 of the Eddington limit. There is
no detectable compact radio continuum emission near the proposed center of the
torus (T_B< 5e6 K on size scales of about 0.1 pc), so that the observed
flat-spectrum core cannot be direct self-absorbed synchrotron radiation.Comment: 12 pages, 4 figures. To appear in ApJ Part 2. Also available at
http://www.physics.ucsb.edu/~vlbiweb
- …
