99 research outputs found

    Nitrogen K-shell photoabsorption

    Get PDF
    Reliable atomic data have been computed for the spectral modeling of the nitrogen K lines, which may lead to useful astrophysical diagnostics. Data sets comprise valence and K-vacancy level energies, wavelengths, Einstein AA-coefficients, radiative and Auger widths and K-edge photoionization cross sections. An important issue is the lack of measurements which are usually employed to fine-tune calculations so as to attain spectroscopic accuracy. In order to estimate data quality, several atomic structure codes are used and extensive comparisons with previous theoretical data have been carried out. In the calculation of K photoabsorption with the Breit--Pauli RR-matrix method, both radiation and Auger damping, which cause the smearing of the K edge, are taken into account. This work is part of a wider project to compute atomic data in the X-ray regime to be included in the database of the popular {\sc xstar} modeling code

    High-precision photometry by telescope defocussing - VI. WASP-24, WASP-25 and WASP-26

    Get PDF
    The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013/) under grant agreement nos. 229517 and 268421. This publication was supported by grants NPRP 09-476-1-078 and NPRP X-019-1-006 from Qatar National Research Fund (a member of Qatar Foundation). TCH acknowledges financial support from the Korea Research Council for Fundamental Science and Technology (KRCF) through the Young Research Scientist Fellowship Programme and is supported by the KASI (Korea Astronomy and Space Science Institute) grant 2012-1-410-02/2013-9-400-00. SG, XW and XF acknowledge the support from NSFC under the grant no. 10873031. The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (grant agreement no. 267864). DR, YD, AE, FF (ARC), OW (FNRS research fellow) and J Surdej acknowledge support from the Communauté française de Belgique – Actions de recherche concertées – Académie Wallonie-Europe.We present time series photometric observations of 13 transits in the planetary systems WASP-24, WASP-25 and WASP-26. All three systems have orbital obliquity measurements, WASP-24 and WASP-26 have been observed with Spitzer, and WASP-25 was previously comparatively neglected. Our light curves were obtained using the telescope-defocussing method and have scatters of 0.5–1.2 mmag relative to their best-fitting geometric models. We use these data to measure the physical properties and orbital ephemerides of the systems to high precision, finding that our improved measurements are in good agreement with previous studies. High-resolution Lucky Imaging observations of all three targets show no evidence for faint stars close enough to contaminate our photometry. We confirm the eclipsing nature of the star closest to WASP-24 and present the detection of a detached eclipsing binary within 4.25 arcmin of WASP-26.Publisher PDFPeer reviewe

    MOA-2010-BLG-477Lb: constraining the mass of a microlensing planet from microlensing parallax, orbital motion and detection of blended light

    Get PDF
    Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the frequency of planets beyond the snow line, which is where giant planets are thought to form according to the core accretion theory of planet formation. In this paper, we report the discovery of a giant planet detected from the analysis of the light curve of a high-magnification microlensing event MOA-2010-BLG-477. The measured planet-star mass ratio is q=(2.181±0.004)×103q=(2.181\pm0.004)\times 10^{-3} and the projected separation is s=1.1228±0.0006s=1.1228\pm0.0006 in units of the Einstein radius. The angular Einstein radius is unusually large θE=1.38±0.11\theta_{\rm E}=1.38\pm 0.11 mas. Combining this measurement with constraints on the "microlens parallax" and the lens flux, we can only limit the host mass to the range 0.13<M/M<1.00.13<M/M_\odot<1.0. In this particular case, the strong degeneracy between microlensing parallax and planet orbital motion prevents us from measuring more accurate host and planet masses. However, we find that adding Bayesian priors from two effects (Galactic model and Keplerian orbit) each independently favors the upper end of this mass range, yielding star and planet masses of M=0.670.13+0.33 MM_*=0.67^{+0.33}_{-0.13}\ M_\odot and mp=1.50.3+0.8 MJUPm_p=1.5^{+0.8}_{-0.3}\ M_{\rm JUP} at a distance of D=2.3±0.6D=2.3\pm0.6 kpc, and with a semi-major axis of a=21+3a=2^{+3}_{-1} AU. Finally, we show that the lens mass can be determined from future high-resolution near-IR adaptive optics observations independently from two effects, photometric and astrometric.Comment: 3 Tables, 12 Figures, accepted in Ap

    Faint source star planetary microlensing : the discovery of the cold gas giant planet OGLE-2014-BLG-0676Lb

    Get PDF
    We report the discovery of a planet — OGLE-2014-BLG-0676Lb— via gravitational microlensing. Observations for the lensing event were made by the MOA, OGLE, Wise, RoboNET/LCOGT, MiNDSTEp and μFUN groups. All analyses of the light curve data favour a lens system comprising a planetary mass orbiting a host star. The most favoured binary lens model has a mass ratio between the two lens masses of (4.78 ± 0.13) × 10−3. Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09 (+1.02/−1.12) MJ planet orbiting a 0.62(+0.20/−0.22) M⊙ host star at a deprojected orbital separation of 4.40 (+2.16/−1.46) AU. The distance to the lens system is 2.22 (+0.96/−0.83) kpc. Planet OGLE-2014-BLG-0676Lb provides additional data to the growing number of cool planets discovered using gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation.PostprintPeer reviewe

    MOA-2010-BLG-523: "Failed Planet" = RS CVn Star

    Get PDF
    peer reviewedThe Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A [SUB]max[/SUB] ~ 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge. Based on observations made with the European Southern Observatory telescopes, Program ID 85.B-0399(I)

    A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251

    Get PDF
    Aims: We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic bulge. Methods: Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q = 1.9 × 10[SUP]-3[/SUP]. Thanks to our detection of higher-order effects on the light curve due to the Earth's orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously. Results: We find that the lens is made up of a planet of mass 0.53 ± 0.21 M[SUB]J[/SUB] orbiting an M dwarf host star with a mass of 0.26 ± 0.11 M[SUB]⊙[/SUB]. The planetary system is located at a distance of 2.57 ± 0.61 kpc towards the Galactic centre. The projected separation of the planet from its host star is d = 1.408 ± 0.019, in units of the Einstein radius, which corresponds to 2.72 ± 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 ± 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around ~1-1.5 AU

    Faint-source-star planetary microlensing: the discovery of the cold gas-giant planet OGLE-2014-BLG-0676Lb

    Get PDF
    We report the discovery of a planet – OGLE-2014-BLG-0676Lb– via gravitational microlensing. Observations for the lensing event were made by the following groups: Microlensing Observations in Astrophysics; Optical Gravitational Lensing Experiment; Wise Observatory; RoboNET/Las Cumbres Observatory Global Telescope; Microlensing Network for the Detection of Small Terrestrial Exoplanets; and μ-FUN. All analyses of the light-curve data favour a lens system comprising a planetary mass orbiting a host star. The most-favoured binary lens model has a mass ratio between the two lens masses of (4.78 ± 0.13) × 10−3. Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09+1.02 −1.12 MJ planet orbiting a 0.62+0.20 −0.22 M host star at a deprojected orbital separation of 4.40+2.16 −1.46 au. The distance to the lens system is 2.22+0.96 −0.83 kpc. Planet OGLE- 2014-BLG-0676Lb provides additional data to the growing number of cool planets discovered using gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation

    Microlensing discovery of a population of very tight, very low mass binary brown dwarfs

    Get PDF
    Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M [SUB]⊙[/SUB] and 0.034 M [SUB]⊙[/SUB], and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ~0.02 M [SUB]⊙[/SUB]. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries

    MiNDSTEp differential photometry of the gravitationally lensed quasars WFI 2033-4723 and HE 0047-1756: Microlensing and a new time delay

    Get PDF
    Aims. We present V and R photometry of the gravitationally lensed quasars WFI 2033-4723 and HE 0047-1756. The data were taken by the MiNDSTEp collaboration with the 1.54 m Danish telescope at the ESO La Silla observatory from 2008 to 2012. Methods. Differential photometry has been carried out using the image subtraction method as implemented in the HOTPAnTS package, additionally using GALFIT for quasar photometry. Results. The quasar WFI 2033-4723 showed brightness variations of order 0.5 mag in V and R during the campaign. The two lensed components of quasar HE 0047-1756 varied by 0.2-0.3 mag within five years. We provide, for the first time, an estimate of the time delay of component B with respect to A of Δt = (7.6 ± 1.8) days for this object. We also find evidence for a secular evolution of the magnitude difference between components A and B in both filters, which we explain as due to a long-duration microlensing event. Finally we find that both quasars WFI 2033-4723 and HE 0047-1756 become bluer when brighter, which is consistent with previous studies
    corecore