770 research outputs found

    Effect of high glucose concentration on the synthesis of monocyte chemoattractant protein-1 in human peritoneal mesothelial cells: Involvement of protein kinase C

    Get PDF
    Human peritoneal mesothelial cells (HMC) contribute to the activation and control of inflammatory processes in the peritoneum by their potential to produce various inflammatory mediators. The present study was designed to assess the effect of glucose, the osmotic active compound in most commercially available peritoneal dialysis fluids, on the synthesis of the C-C chemokine monocyte chemoattractant protein-1 (MCP-1) in cultured HMC. The MCP-1 concentration in the cell supernatants was determined by enzyme-linked immunosorbent assay and the MCP-1 mRNA expression was examined using Northern blot analysis. Incubation of HMC with glucose (30-120 mM) resulted in a time- and concentration-dependent increase in MCP-1 protein secretion and mRNA expression. After 24 h the MCP-1 synthesis was increased from 2.8 +/- 0.46 to 4.2 +/- 0.32 ng/10(5) cells (n = 5, p 2001 S. Karger AG. Basel

    c-axis Josephson Tunneling in Twinned YBCO Crystals

    Full text link
    Josephson tunneling between YBCO and Pb with the current flowing along the c-axis of the YBCO is persumed to come from an s-wave component of the superconductivity of the YBCO. Experiments on multi-twin samples are not entirely consistent with this hypothesis. The sign change of the s-wave order parameter across the N_T twin boundaries should give cancelations, resulting in a small (N)(\sqrt{N}) tunneling current. The actual current is larger than this. We present a theory of this unexpectedly large current based upon a surface effect: disorder-induced supression of the d-wave component at the (001) surface leads to s-wave coherence across the twin boundaries and a non-random tunneling current. We solve the case of an ordered array of d+s and d-s twins, and estimate that the twin size at which s-wave surface coherence occurs is consistent with typical sizes observed in experiments. In this picture, there is a phase difference of π/2\pi/2 between different surfaces of the material. We propose a corner junction experiment to test this picture.Comment: 5 pages, 4 eps figure

    Testing spontaneous localization theories with matter-wave interferometry

    Full text link
    We propose to test the theory of continuous spontaneous localization (CSL) in an all-optical time-domain Talbot-Lau interferometer for clusters with masses exceeding 1000000 amu. By assessing the relevant environmental decoherence mechanisms, as well as the growing size of the particles relative to the grating fringes, we argue that it will be feasible to test the quantum superposition principle in a mass range excluded by recent estimates of the CSL effect.Comment: 4 pages, 3 figures; corresponds to published versio

    Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders.

    Get PDF
    Genes for autism spectrum disorders (ASDs) are also implicated in fragile X syndrome (FXS), intellectual disabilities (ID) or schizophrenia (SCZ), and converge on neuronal function and differentiation. The SH-SY5Y neuroblastoma cell line, the most widely used system to study neurodevelopment, is currently discussed for its applicability to model cortical development. We implemented an optimal neuronal differentiation protocol of this system and evaluated neurodevelopment at the transcriptomic level using the CoNTeXT framework, a machine-learning algorithm based on human post-mortem brain data estimating developmental stage and regional identity of transcriptomic signatures. Our improved model in contrast to currently used SH-SY5Y models does capture early neurodevelopmental processes with high fidelity. We applied regression modelling, dynamic time warping analysis, parallel independent component analysis and weighted gene co-expression network analysis to identify activated gene sets and networks. Finally, we tested and compared these sets for enrichment of risk genes for neuropsychiatric disorders. We confirm a significant overlap of genes implicated in ASD with FXS, ID and SCZ. However, counterintuitive to this observation, we report that risk genes affect pathways specific for each disorder during early neurodevelopment. Genes implicated in ASD, ID, FXS and SCZ were enriched among the positive regulators, but only ID-implicated genes were also negative regulators of neuronal differentiation. ASD and ID genes were involved in dendritic branching modules, but only ASD risk genes were implicated in histone modification or axonal guidance. Only ID genes were over-represented among cell cycle modules. We conclude that the underlying signatures are disorder-specific and that the shared genetic architecture results in overlaps across disorders such as ID in ASD. Thus, adding developmental network context to genetic analyses will aid differentiating the pathophysiology of neuropsychiatric disorders

    Electron beam driven alkali metal atom source for loading a magneto-optical trap in a cryogenic environment

    Full text link
    We present a versatile and compact electron beam driven source for alkali metal atoms, which can be implemented in cryostats. With a heat load of less than 10mW, the heat dissipation normalized to the atoms loaded into the magneto-optical Trap (MOT), is about a factor 1000 smaller than for a typical alkali metal dispenser. The measured linear scaling of the MOT loading rate with electron current observed in the experiments, indicates that electron stimulated desorption is the corresponding mechanism to release the atoms.Comment: 5 pages, 3 figure

    ARPES in the normal state of the cuprates: comparing the marginal Fermi liquid and spin fluctuation scenarios

    Full text link
    We address the issue whether ARPES measurements of the spectral function Ak(ω)A_k (\omega) near the Fermi surface in the normal state of near optimally doped cuprates can distinguish between the marginal Fermi liquid scenario and the spin-fluctuation scenario. We argue that the data for momenta near the Fermi surface are equally well described by both theories, but this agreement is nearly meaningless as in both cases one has to add to Σ(ω)\Sigma^{\prime \prime} (\omega) a large constant of yet unknown origin. We show that the data can be well fitted by keeping only this constant term in the self-energy. To distinguish between the two scenarios, one has to analyze the data away from the Fermi surface, when the intrinsic piece in Σ(ω)\Sigma (\omega) becomes dominant.Comment: Accepted for publication in Europhysics Letters, Incorrect interpretation of reference 10 correcte

    Automatic Filters for the Detection of Coherent Structure in Spatiotemporal Systems

    Full text link
    Most current methods for identifying coherent structures in spatially-extended systems rely on prior information about the form which those structures take. Here we present two new approaches to automatically filter the changing configurations of spatial dynamical systems and extract coherent structures. One, local sensitivity filtering, is a modification of the local Lyapunov exponent approach suitable to cellular automata and other discrete spatial systems. The other, local statistical complexity filtering, calculates the amount of information needed for optimal prediction of the system's behavior in the vicinity of a given point. By examining the changing spatiotemporal distributions of these quantities, we can find the coherent structures in a variety of pattern-forming cellular automata, without needing to guess or postulate the form of that structure. We apply both filters to elementary and cyclical cellular automata (ECA and CCA) and find that they readily identify particles, domains and other more complicated structures. We compare the results from ECA with earlier ones based upon the theory of formal languages, and the results from CCA with a more traditional approach based on an order parameter and free energy. While sensitivity and statistical complexity are equally adept at uncovering structure, they are based on different system properties (dynamical and probabilistic, respectively), and provide complementary information.Comment: 16 pages, 21 figures. Figures considerably compressed to fit arxiv requirements; write first author for higher-resolution version

    Colloquium: Quantum interference of clusters and molecules

    Full text link
    We review recent progress and future prospects of matter wave interferometry with complex organic molecules and inorganic clusters. Three variants of a near-field interference effect, based on diffraction by material nanostructures, at optical phase gratings, and at ionizing laser fields are considered. We discuss the theoretical concepts underlying these experiments and the experimental challenges. This includes optimizing interferometer designs as well as understanding the role of decoherence. The high sensitivity of matter wave interference experiments to external perturbations is demonstrated to be useful for accurately measuring internal properties of delocalized nanoparticles. We conclude by investigating the prospects for probing the quantum superposition principle in the limit of high particle mass and complexity.Comment: 19 pages, 13 figures; v2: corresponds to published versio

    Observation of the second harmonic in superconducting current-phase relation of Nb/Au/(001)YBa2Cu3Ox heterojunctions

    Full text link
    The superconducting current-phase relation (CPR) of Nb/Au/(001)YBa2Cu3Ox heterojunctions prepared on epitaxial c-axis oriented YBa2Cu3Ox thin films has been measured in a single-junction interferometer. For the first time, the second harmonic of the CPR of such junctions has been observed. The appearance of the second harmonic and the relative sign of the first and second harmonics of the CPR can be explained assuming, that the macroscopic pairing symmetry of our YBa2Cu3Ox thin films is of the d+s typeComment: 11 pages, 4 figure

    Singularities in the optical response of cuprates

    Full text link
    We argue that the detailed analysis of the optical response in cuprate superconductors allows one to verify the magnetic scenario of superconductivity in cuprates, as for strong coupling charge carriers to antiferromagnetic spin fluctuations, the second derivative of optical conductivity should contain detectable singularities at 2Δ+Δspin2\Delta +\Delta_{\rm spin}, 4Δ4\Delta, and 2Δ+2Δspin2\Delta+2\Delta_{\rm spin}, where Δ\Delta is the amplitude of the superconducting gap, and Δs\Delta_{s} is the resonance energy of spin fluctuations measured in neutron scattering. We argue that there is a good chance that these singularities have already been detected in the experiments on optimally doped YBCOYBCO.Comment: 6 pages, 4 figure
    corecore