3,293 research outputs found
Flat growth of 7075, 7475, 7050 and 7049 aluminum alloy plate in stress corrosion environments: 2-year marine atmosphere results
Marine atmospheric exposure of smooth and precracked specimens from 7075, 7475, 7050 and 7049 plates support the conclusion that for a given strength level, the short transverse stress corrosion resistance of 7050-T7X and 7049-T7X is superior to that of 7075-T7X. The threshold stress intensity (K sub Iscc) for these alloys is about 25 MPa square root m at a yield strength of about 460 MPa; the corresponding yield strength level for 7075-T7X at this SCR level is about 425 MPa. Additional tests on two lots of high-toughness 7475 plate indicate that this alloy is capable of achieving K sub Iscc values of about 35 MPa square root m at yield strengths of 400-450 MPa. Precracked specimens from all these 7XXX-series alloys are subject to self loading from corrosion product wedging. This effect causes stress corrosion cracks to continue growing at very low apparent stress intensities, and should therefore be considered a potential driving force for stress corrosion in design and materials selection
Flaw growth of 7075, 7475, 7050 and 7049 aluminum alloy plate in stress corrosion environments: 4-year marine atmosphere results
After nearly 53 months of exposure to marine atmosphere, crack growth in SL DCB specimens from 7075, 7475, 7050, and 7049-T7X plate has slowed to the arbitrary 10 to the -10 power m/sec used to define threshold stress intensity. Because some specimens appear to be approaching crack arrest, the importance of self-loading from corrosion product wedging as a significant driving force for crack propagation in overaged materials is questioned. Crack length-time data were analyzed using a computer curve fitting program which minimized the effects of normal data scatter, and provided a clearer picture of material performance. Precracked specimen data are supported by the results of smooth specimen tests. Transgranular stress corrosion cracking was observed in TL DCB specimens from all four alloys. This process is extremely slow and is characterized by a striated surface morphology
Effect of reactor irradiation on properties of a nongalling alloy
Effect of reactor irradiation on properties of nongalling alloy
Flaw growth of 7075, 7475, 7050 and 7049 aluminum alloy plate in stress corrosion environments
Marine atmosphere and laboratory stress corrosion test results on smooth and precracked specimens from 7075, 7475, 7050, and 7049 alloy plates (1.25 and 3.0-in. thick) are presented. It is shown that for a given strength level, alloys 7050-T7X and 7049-T7X have superior short-transverse stress corrosion resistance (SCR) to 7X75-T7X. At typical strength levels above the minimum, for example, SCR of these alloys is considerably better than that of 7075-T76, and approaches that of 7075-T73. Alloy 7475 maintains an advantage in the area of fracture toughness, however, because it can be thermally processed to give particularly clean microstructures. Results from precracked specimens are in good qualitative agreement with those obtained from smooth specimens. Although both specimen types are capable of distinguishing between -T6, -T76 and -T73 tempers in relatively short time periods the precracked specimen provides more information about crack growth rates
Energy dependence of nucleus-nucleus potential close to the Coulomb barrier
The nucleus-nucleus interaction potentials in heavy-ion fusion reactions are
extracted from the microscopic time-dependent Hartree-Fock theory for mass
symmetric reactions OO, CaCa,
CaCa and mass asymmetric reactions OCa,
CaCa, O+Pb, Ca+Zr. When the
center-of-mass energy is much higher than the Coulomb barrier energy,
potentials deduced with the microscopic theory identify with the frozen density
approximation. As the center-of-mass energy decreases and approaches the
Coulomb barrier, potentials become energy dependent. This dependence signs
dynamical reorganization of internal degrees of freedom and leads to a
reduction of the "apparent" barrier felt by the two nuclei during fusion of the
order of compared to the frozen density case. Several examples
illustrate that the potential landscape changes rapidly when the center-of-mass
energy is in the vicinity of the Coulomb barrier energy. The energy dependence
is expected to have a significant role on fusion around the Coulomb barrier.Comment: 11 pages, 13 figures, 1 table, discussion of effects of
coordinate-dependent mass added, accepted for publication in Phys. Rev.
Origin of the neutron skin thickness of 208Pb in nuclear mean-field models
We study whether the neutron skin thickness (NST) of 208Pb originates from
the bulk or from the surface of the nucleon density distributions, according to
the mean-field models of nuclear structure, and find that it depends on the
stiffness of the nuclear symmetry energy. The bulk contribution to NST arises
from an extended sharp radius of neutrons, whereas the surface contribution
arises from different widths of the neutron and proton surfaces. Nuclear models
where the symmetry energy is stiff, as typical relativistic models, predict a
bulk contribution in NST of 208Pb about twice as large as the surface
contribution. In contrast, models with a soft symmetry energy like common
nonrelativistic models predict that NST of 208Pb is divided similarly into bulk
and surface parts. Indeed, if the symmetry energy is supersoft, the surface
contribution becomes dominant. We note that the linear correlation of NST of
208Pb with the density derivative of the nuclear symmetry energy arises from
the bulk part of NST. We also note that most models predict a mixed-type
(between halo and skin) neutron distribution for 208Pb. Although the halo-type
limit is actually found in the models with a supersoft symmetry energy, the
skin-type limit is not supported by any mean-field model. Finally, we compute
parity-violating electron scattering in the conditions of the 208Pb parity
radius experiment (PREX) and obtain a pocket formula for the parity-violating
asymmetry in terms of the parameters that characterize the shape of the 208Pb
nucleon densities.Comment: 11 pages, 4 figures; minor stylistic changes in text, new Ref. [56]
added (new measurement of the neutron skin thickness of 208Pb
Analysis of bulk and surface contributions in the neutron skin of nuclei
The neutron skin thickness of nuclei is a sensitive probe of the nuclear
symmetry energy having multiple implications for nuclear and astrophysical
studies. However, precision measurements of this observable are difficult. The
analysis of the experimental data may imply some assumptions about the bulk or
surface nature of the formation of the neutron skin. Here, we study the bulk or
surface character of neutron skins of nuclei following from calculations with
Gogny, Skyrme, and covariant nuclear mean-field interactions. These
interactions are successful in describing nuclear charge radii and binding
energies but predict different values for neutron skins. We perform the study
by fitting two-parameter Fermi distributions to the calculated self-consistent
neutron and proton densities. We note that the equivalent sharp radius is a
more suitable reference quantity than the half-density radius parameter of the
Fermi distributions to discern between the bulk and surface contributions in
neutron skins. We present calculations for nuclei in the stability valley and
for the isotopic chains of Sn and Pb.Comment: 13 pages, 9 figure
Observation of Three-dimensional Long-range Order in Smaller Ion Coulomb Crystals in an rf Trap
Three-dimensional long-range ordered structures in smaller and
near-spherically symmetric Coulomb crystals of ^{40}Ca^+ ions confined in a
linear rf Paul trap have been observed when the number of ions exceeds ~1000
ions. This result is unexpected from ground state molecular dynamics (MD)
simulations, but found to be in agreement with MD simulations of metastable ion
configurations. Previously, three-dimensional long-range ordered structures
have only been reported in Penning traps in systems of ~50,000 ions or more.Comment: 5 pages; 4 figures; to appear in Phys. Rev. Lett.; changed content
From finite nuclei to the nuclear liquid drop: leptodermous expansion based on the self-consistent mean-field theory
The parameters of the nuclear liquid drop model, such as the volume, surface,
symmetry, and curvature constants, as well as bulk radii, are extracted from
the non-relativistic and relativistic energy density functionals used in
microscopic calculations for finite nuclei. The microscopic liquid drop energy,
obtained self-consistently for a large sample of finite, spherical nuclei, has
been expanded in terms of powers of A^{-1/3} (or inverse nuclear radius) and
the isospin excess (or neutron-to-proton asymmetry). In order to perform a
reliable extrapolation in the inverse radius, the calculations have been
carried out for nuclei with huge numbers of nucleons, of the order of 10^6. The
Coulomb interaction has been ignored to be able to approach nuclei of arbitrary
sizes and to avoid radial instabilities characteristic of systems with very
large atomic numbers. The main contribution to the fluctuating part of the
binding energy has been removed using the Green's function method to calculate
the shell correction. The limitations of applying the leptodermous expansion to
actual nuclei are discussed. While the leading terms in the macroscopic energy
expansion can be extracted very precisely, the higher-order, isospin-dependent
terms are prone to large uncertainties due to finite-size effects.Comment: 13 pages revtex4, 7 eps figures, submitted to Phys. Rev.
A generalized linear Hubble law for an inhomogeneous barotropic Universe
In this work, I present a generalized linear Hubble law for a barotropic
spherically symmetric inhomogeneous spacetime, which is in principle compatible
with the acceleration of the cosmic expansion obtained as a result of high
redshift Supernovae data. The new Hubble function, defined by this law, has two
additional terms besides an expansion one, similar to the usual volume
expansion one of the FLRW models, but now due to an angular expansion. The
first additional term is dipolar and is a consequence of the existence of a
kinematic acceleration of the observer, generated by a negative gradient of
pressure or of mass-energy density. The second one is quadrupolar and due to
the shear. Both additional terms are anisotropic for off-centre observers,
because of to their dependence on a telescopic angle of observation. This
generalized linear Hubble law could explain, in a cosmological setting, the
observed large scale flow of matter, without to have recourse to peculiar
velocity-type newtonian models. It is pointed out also, that the matter dipole
direction should coincide with the CBR dipole one.Comment: 9 pages, LaTeX, to be published in Class. Quantum Gra
- …
