2,167 research outputs found
Recoverable One-dimensional Encoding of Three-dimensional Protein Structures
Protein one-dimensional (1D) structures such as secondary structure and
contact number provide intuitive pictures to understand how the native
three-dimensional (3D) structure of a protein is encoded in the amino acid
sequence. However, it has not been clear whether a given set of 1D structures
contains sufficient information for recovering the underlying 3D structure.
Here we show that the 3D structure of a protein can be recovered from a set of
three types of 1D structures, namely, secondary structure, contact number and
residue-wise contact order which is introduced here for the first time. Using
simulated annealing molecular dynamics simulations, the structures satisfying
the given native 1D structural restraints were sought for 16 proteins of
various structural classes and of sizes ranging from 56 to 146 residues. By
selecting the structures best satisfying the restraints, all the proteins
showed a coordinate RMS deviation of less than 4\AA{} from the native
structure, and for most of them, the deviation was even less than 2\AA{}. The
present result opens a new possibility to protein structure prediction and our
understanding of the sequence-structure relationship.Comment: Corrected title. No Change In Content
Extra-adrenal regeneration of glucocorticoids by 11beta-hydroxysteroid dehydrogenase type 1:physiological regulator and pharmacological target for energy partitioning
The major glucocorticoid in man, cortisol, plays important roles in regulating fuel metabolism, energy partitioning and body fat distribution. In addition to the control of cortisol levels in blood by the hypothalamic-pituitary-adrenal axis, intracellular cortisol levels within target tissues can be controlled by local enzymes. 11Beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyses the regeneration of active cortisol from inert cortisone, thereby amplifying cortisol levels and glucocorticoid receptor activation in adipose tissue, liver and other tissues. 11Beta-HSD1 is under complex tissue-specific regulation and there is evidence that it adjusts local cortisol concentrations independently of the plasma cortisol concentrations, e.g. in response to changes in diet. In obesity 11beta-HSD1 mRNA and activity in adipose tissue are increased. The mechanism of this up-regulation remains uncertain; polymorphisms in the HSD11B1 gene have been associated with metabolic complications of obesity, including hypertension and type 2 diabetes, but not with obesity per se. Extensive data have been obtained in mice with transgenic over-expression of 11beta-HSD1 in liver and adipocytes, targeted deletion of 11beta-HSD1, and using novel selective 11beta-HSD1 inhibitors; these data support the use of 11beta-HSD1 inhibitors to lower intracellular glucocorticoid levels and treat both obesity and its metabolic complications. Moreover, in human subjects the non-selective 'prototype' inhibitor carbenoxolone enhances insulin sensitivity. Results of clinical studies with novel potent selective 11beta-HSD1 inhibitors are therefore eagerly awaited. The present article focuses on the physiological role of glucocorticoids in regulating energy partitioning, and the evidence that this process is modulated by 11beta-HSD1 in human subjects
Benchmarking quantum control methods on a 12-qubit system
In this letter, we present an experimental benchmark of operational control
methods in quantum information processors extended up to 12 qubits. We
implement universal control of this large Hilbert space using two complementary
approaches and discuss their accuracy and scalability. Despite decoherence, we
were able to reach a 12-coherence state (or 12-qubits pseudo-pure cat state),
and decode it into an 11 qubit plus one qutrit labeled observable pseudo-pure
state using liquid state nuclear magnetic resonance quantum information
processors.Comment: 11 pages, 4 figures, to be published in PR
A Note on the correspondence between Qubit Quantum Operations and Special Relativity
We exploit a well-known isomorphism between complex hermitian
matrices and , which yields a convenient real vector
representation of qubit states. Because these do not need to be normalized we
find that they map onto a Minkowskian future cone in , whose
vertical cross-sections are nothing but Bloch spheres. Pure states are
represented by light-like vectors, unitary operations correspond to special
orthogonal transforms about the axis of the cone, positive operations
correspond to pure Lorentz boosts. We formalize the equivalence between the
generalized measurement formalism on qubit states and the Lorentz
transformations of special relativity, or more precisely elements of the
restricted Lorentz group together with future-directed null boosts. The note
ends with a discussion of the equivalence and some of its possible
consequences.Comment: 6 pages, revtex, v3: revised discussio
Principles of Control for Decoherence-Free Subsystems
Decoherence-Free Subsystems (DFS) are a powerful means of protecting quantum
information against noise with known symmetry properties. Although Hamiltonians
theoretically exist that can implement a universal set of logic gates on DFS
encoded qubits without ever leaving the protected subsystem, the natural
Hamiltonians that are available in specific implementations do not necessarily
have this property. Here we describe some of the principles that can be used in
such cases to operate on encoded qubits without losing the protection offered
by the DFS. In particular, we show how dynamical decoupling can be used to
control decoherence during the unavoidable excursions outside of the DFS. By
means of cumulant expansions, we show how the fidelity of quantum gates
implemented by this method on a simple two-physical-qubit DFS depends on the
correlation time of the noise responsible for decoherence. We further show by
means of numerical simulations how our previously introduced "strongly
modulating pulses" for NMR quantum information processing can permit
high-fidelity operations on multiple DFS encoded qubits in practice, provided
that the rate at which the system can be modulated is fast compared to the
correlation time of the noise. The principles thereby illustrated are expected
to be broadly applicable to many implementations of quantum information
processors based on DFS encoded qubits.Comment: 12 pages, 7 figure
A Study of Quantum Error Correction by Geometric Algebra and Liquid-State NMR Spectroscopy
Quantum error correcting codes enable the information contained in a quantum
state to be protected from decoherence due to external perturbations. Applied
to NMR, quantum coding does not alter normal relaxation, but rather converts
the state of a ``data'' spin into multiple quantum coherences involving
additional ancilla spins. These multiple quantum coherences relax at differing
rates, thus permitting the original state of the data to be approximately
reconstructed by mixing them together in an appropriate fashion. This paper
describes the operation of a simple, three-bit quantum code in the product
operator formalism, and uses geometric algebra methods to obtain the
error-corrected decay curve in the presence of arbitrary correlations in the
external random fields. These predictions are confirmed in both the totally
correlated and uncorrelated cases by liquid-state NMR experiments on
13C-labeled alanine, using gradient-diffusion methods to implement these
idealized decoherence models. Quantum error correction in weakly polarized
systems requires that the ancilla spins be prepared in a pseudo-pure state
relative to the data spin, which entails a loss of signal that exceeds any
potential gain through error correction. Nevertheless, this study shows that
quantum coding can be used to validate theoretical decoherence mechanisms, and
to provide detailed information on correlations in the underlying NMR
relaxation dynamics.Comment: 33 pages plus 6 figures, LaTeX article class with amsmath & graphicx
package
SOPHIE velocimetry of Kepler transit candidates XI. Kepler-412 system: probing the properties of a new inflated hot Jupiter
We confirm the planetary nature of Kepler-412b, listed as planet candidate
KOI-202 in the Kepler catalog, thanks to our radial velocity follow-up program
of Kepler-released planet candidates, which is on going with the SOPHIE
spectrograph. We performed a complete analysis of the system by combining the
Kepler observations from Q1 to Q15, to ground-based spectroscopic observations
that allowed us to derive radial velocity measurements, together with the host
star parameters and properties. We also analyzed the light curve to derive the
star's rotation period and the phase function of the planet, including the
secondary eclipse. We found the planet has a mass of 0.939 0.085
M and a radius of 1.325 0.043 R which makes it a member
of the bloated giant subgroup. It orbits its G3 V host star in 1.72 days. The
system has an isochronal age of 5.1 Gyr, consistent with its moderate stellar
activity as observed in the Kepler light curve and the rotation of the star of
17.2 1.6 days. From the detected secondary, we derived the day side
temperature as a function of the geometric albedo and estimated the geometrical
albedo, Ag, is in the range 0.094 to 0.013. The measured night side flux
corresponds to a night side brightness temperature of 2154 83 K, much
greater than what is expected for a planet with homogeneous heat
redistribution. From the comparison to star and planet evolution models, we
found that dissipation should operate in the deep interior of the planet. This
modeling also shows that despite its inflated radius, the planet presents a
noticeable amount of heavy elements, which accounts for a mass fraction of 0.11
0.04.Comment: 11 pages, 9 figure
A Method for Modeling Decoherence on a Quantum Information Processor
We develop and implement a method for modeling decoherence processes on an
N-dimensional quantum system that requires only an -dimensional quantum
environment and random classical fields. This model offers the advantage that
it may be implemented on small quantum information processors in order to
explore the intermediate regime between semiclassical and fully quantum models.
We consider in particular system-environment couplings which
induce coherence (phase) damping, though the model is directly extendable to
other coupling Hamiltonians. Effective, irreversible phase-damping of the
system is obtained by applying an additional stochastic Hamiltonian on the
environment alone, periodically redressing it and thereby irreversibliy
randomizing the system phase information that has leaked into the environment
as a result of the coupling. This model is exactly solvable in the case of
phase-damping, and we use this solution to describe the model's behavior in
some limiting cases. In the limit of small stochastic phase kicks the system's
coherence decays exponentially at a rate which increases linearly with the kick
frequency. In the case of strong kicks we observe an effective decoupling of
the system from the environment. We present a detailed implementation of the
method on an nuclear magnetic resonance quantum information processor.Comment: 12 pages, 9 figure
Experimental Implementation of Logical Bell State Encoding
Liquid phase NMR is a general purpose test-bed for developing methods of
coherent control relevant to quantum information processing. Here we extend
these studies to the coherent control of logical qubits and in particular to
the unitary gates necessary to create entanglement between logical qubits. We
report an experimental implementation of a conditional logical gate between two
logical qubits that are each in decoherence free subspaces that protect the
quantum information from fully correlated dephasing.Comment: 9 Pages, 5 Figure
- …
