105 research outputs found
Optical doping of nitrides by ion implantation
A series of rare earth elements (RE) were implanted in GaN epilayers to study the lattice site location and optical activity. Rutherford backscattering spectrometry in the channeling mode(RBS/C) was used to follow the damage behavior in the Ga sublattice and the site location of the RE. For all the implanted elements (Ce, Pr, Dy, Er, and Lu) the results indicate the complete substitutionality on Ga sites after rapid thermal annealing at 1000°C for 2 min. The only exception occurs for Eu, which occupies a Ga displaced site. Annealing at 1200°C in nitrogen atmosphere at a pressure of IGPa is necessary to achieve the complete recovery of the damage in the samples. After annealing the recombination processes of the implanted samples were studied by above and below band gap excitation. For Er implanted samples besides the 1.54 μm emission green and red emissions are also observed. Red emissions from 5D0→7F2 and 3P0→3F2 transitions were found in Eu and Pr implanted samples even at room temperature
Voltage-programmable liquid optical interface
Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers, that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices
Analysis of the Thermodynamic Phase Transition of Tracked Convective Clouds Based on Geostationary Satellite Observations
Clouds are liquid at temperature greater than 0°C and ice at temperature below −38°C. Between these two thresholds, the temperature of the cloud thermodynamic phase transition from liquid to ice is difficult to predict and the theory and numerical models do not agree: Microphysical, dynamical, and meteorological parameters influence the glaciation temperature. We temporally track optical and microphysical properties of 796 clouds over Europe from 2004 to 2015 with the space‐based instrument Spinning Enhanced Visible and Infrared Imager on board the geostationary METEOSAT second generation satellites. We define the glaciation temperature as the mean between the cloud top temperature of those consecutive images for which a thermodynamic phase change in at least one pixel is observed for a given cloud object. We find that, on average, isolated convective clouds over Europe freeze at −21.6°C. Furthermore, we analyze the temporal evolution of a set of cloud properties and we retrieve glaciation temperatures binned by meteorological and microphysical regimes: For example, the glaciation temperature increases up to 11°C when cloud droplets are large, in line with previous studies. Moreover, the correlations between the parameters characterizing the glaciation temperature are compared and analyzed and a statistical study based on principal component analysis shows that after the cloud top height, the cloud droplet size is the most important parameter to determine the glaciation temperature
Space- and time-resolved investigation on diffusion kinetics of human skin following macromolecule delivery by microneedle arrays
Microscale medical devices are being developed for targeted skin delivery of vaccines and the extraction of biomarkers, with the potential to revolutionise healthcare in both developing and developed countries. The effective clinical development of these devices is dependent on understanding the macro-molecular diffusion properties of skin. We hypothesised that diffusion varied according to specific skin layers. Using three different molecular weights of rhodamine dextran (RD) (MW of 70, 500 and 2000 kDa) relevant to the vaccine and therapeutic scales, we deposited molecules to a range of depths (0–300 µm) in ex vivo human skin using the Nanopatch device. We observed significant dissipation of RD as diffusion with 70 and 500 kDa within the 30 min timeframe, which varied with MW and skin layer. Using multiphoton microscopy, image analysis and a Fick’s law analysis with 2D cartesian and axisymmetric cylindrical coordinates, we reported experimental trends of epidermal and dermal diffusivity values ranging from 1–8 µm2 s-1 to 1–20 µm2 s-1 respectively, with a significant decrease in the dermal-epidermal junction of 0.7–3 µm2 s-1. In breaching the stratum corneum (SC) and dermal-epidermal junction barriers, we have demonstrated practical application, delivery and targeting of macromolecules to both epidermal and dermal antigen presenting cells, providing a sound knowledge base for future development of skin-targeting clinical technologies in humans
Wettability Switching Techniques on Superhydrophobic Surfaces
The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces
Droplet Actuation by Electrowetting-on-Dielectric (EWOD): A Review
This paper reviews publications that have fortified our understanding of the electrowetting-on-dielectric (EWOD) actuation mechanism. Over the last decade, growing interest in EWOD has led to a wide range of scientific and technological investigations motivated by its applicability in microfluidics, especially for droplet-based optical and lab-on-a-chip systems. At this point in time, we believe that it is helpful to summarize the observations, insights, and modeling techniques that have led to the current picture showing how forces act on liquid droplets and how droplets respond in EWOD microfluidic devices. We discuss the basic physics of EWOD and explain the mechanical response of a droplet using free-body diagrams. It is our hope that this review will inspire new research approaches and help design useful devices. © 2012 Copyright Taylor and Francis Group, LLC
Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform
Currently, there is no available needle-free approach for diabetics to monitor glucose levels in the interstitial fluid. Here, we report a path-selective, non-invasive, transdermal glucose monitoring system based on a miniaturized pixel array platform (realized either by graphene-based thin-film technology, or screen-printing). The system samples glucose from the interstitial fluid via electroosmotic extraction through individual, privileged, follicular pathways in the skin, accessible via the pixels of the array. A proof of principle using mammalian skin ex vivo is demonstrated for specific and ‘quantized’ glucose extraction/detection via follicular pathways, and across the hypo- to hyper-glycaemic range in humans. Furthermore, the quantification of follicular and non-follicular glucose extraction fluxes is clearly shown. In vivo continuous monitoring of interstitial fluid-borne glucose with the pixel array was able to track blood sugar in healthy human subjects. This approach paves the way to clinically relevant glucose detection in diabetics without the need for invasive, finger-stick blood sampling
Isokinetische Kraftmessung nach arthroskopischer Rotatorenmanschettenrekontruktion - Ergebnisse nach 24 Monaten
The role of the AC joint with arthroscopic subacromial decompression - coplaning or resection of the distal clavicle?
Erste Ergebnisse der endoskopischen Rekonstruktion von partiellen distalen Trizepssehnenrupturen - prospektive Ergebnisse von 14 Patienten
- …
