6,544 research outputs found
Glowing Seashells: Diversity of Fossilized Coloration Patterns on Coral Reef-Associated Cone Snail (Gastropoda: Conidae) Shells from the Neogene of the Dominican Republic
The biology of modern Conidae (cone snails)—which includes the hyperdiverse genus Conus—has been intensively studied, but the fossil record of the clade remains poorly understood, particularly within an evolutionary framework. Here, ultraviolet light is used to reveal and characterize the original shell coloration patterns of 28 species of cone snails from three Neogene coral reef-associated deposits from the Cibao Valley, northern Dominican Republic. These fossils come from the upper Miocene Cercado Fm. and lower Pliocene Gurabo Fm., and range in age from about 6.6-4.8 Ma. Comparison of the revealed coloration patterns with those of extant species allow the taxa to be assigned to three genera of cone snails (Profundiconus, Conasprella, and Conus) and at least nine subgenera. Thirteen members of these phylogenetically diverse reef faunas are described as new species. These include: Profundiconus? hennigi, Conasprella (Ximeniconus) ageri, Conus anningae, Conus lyelli, Conus (Atlanticonus?) franklinae, Conus (Stephanoconus) gouldi, Conus (Stephanoconus) bellacoensis, Conus (Ductoconus) cashi, Conus (Dauciconus) garrisoni, Conus (Dauciconus?) zambaensis, Conus (Spuriconus?) kaesleri, Conus (Spuriconus?) lombardii, and Conus (Lautoconus?) carlottae. Each of the three reef deposits contain a minimum of 14–16 cone snail species, levels of diversity that are similar to modern Indo-Pacific reef systems. Finally, most of the 28 species can be assigned to modern clades and thus have important implications for understanding the biogeographic and temporal histories of these clades in tropical America
Two phase choke flow in tubes with very large L/D
Data were obtained for two phase and gaseous choked flow nitrogen in a long constant area duct of 16200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two phase homogeneous equilibrium choking flow model which includes wall friction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data resonably well, but about 15 percent low
Using Marine Snails to Teach Biogeography and Macroevolution: The Role of Larvae and Dispersal Ability in the Evolution and Persistence of Species
While some marine animals are capable of traveling great distances, many have limited mobility as adults and spend the majority of their lifetimes in a small geographical area or may even be cemented to a single place. While it might be expected that species with limited mobility would have small geographic distributions, some nevertheless occur over very large areas. This is the case for some marine snails (gastropods). A key factor that impacts the geographic distribution of marine snails is the type of larvae they have during the phase of their life history that follows hatching from an egg. Because adult snails do not typically travel vast distances, the mobility of the larval stage determines the species’ ability to reach new territories. Some larvae are capable of long-distance travel, while others are not. An important component of the process of speciation involves geographic isolation, so the type of larvae a snail species possesses impacts the likelihood that it will become geographically isolated and give rise to a new species. Larval form also affects how long snail species will persist on geological timescales before going extinct, as well as rates of speciation. This paper briefly reviews the evolutionary consequences of different types of larval development in marine gastropods (especially cone snails, which are one of the most diverse groups of marine animals), particularly in determining the dispersal ability and geographic ranges of individual species, the amount of genetic exchange among populations within species, and the duration of species through time. The goal of this short review is to provide context and examples for classroom discussions of the connections between biogeography and macroevolution. Furthermore, a classroom activity is presented that involves students’ using information about snail life history and biogeography to develop research plans (and predicted results) that could be utilized to test (i.e., support or reject) several macroevolutionary hypotheses
Metabolic simulation chamber
Metabolic simulation combustion chamber was developed as subsystem for breathing metabolic simulator. Entire system is used for evaluation of life support and resuscitation equipment. Metabolism subsystem simulates a human by consuming oxygen and producing carbon dioxide. Basic function is to simulate human metabolic range from rest to hard work
GASPLOT - A computer graphics program that draws a variety of thermophysical property charts
A FORTRAN V computer program, written for the UNIVAC 1100 series, is used to draw a variety of precision thermophysical property charts on the Calcomp plotter. In addition to the program (GASPLOT), which requires (15 160) sub 10 storages, a thermophysical properties routine needed to produce plots. The program is designed so that any two of the state variables, the derived variables, or the transport variables may be plotted as the ordinate - abscissa pair with as many as five parametric variables. The parameters may be temperature, pressure, density, enthalpy, and entropy. Each parameter may have as many a 49 values, and the range of the variables is limited only by the thermophysical properties routine
Survey of heat transfer to near critical fluids
Survey topics include - heat transfer boundaries of near critical region, free, natural, and forced convection experiments, oscillations, geometric effects, parameters which appear to be significant to heat transfer in critical region, and theories which have been proposed for region
Metallic and metalloceramic coating by thermal decomposition
Metallic and metalloceramic coatings were prepared by thermal decomposition of a number of inorganic and metallo-organic compounds. The compounds were applied by spraying and by immersion, especially on ceramic fibers and fiber forms, which are easily coated by this procedure. Penetration of low-density ceramics is examined, and procedures are described that were used for converting the deposited materials to metals, oxides, or metal oxide films. Multiple-component films were also prepared. Photomicrographs illustrate the structure of these films
Effect of thermal cycling on ZrO2-Y2O3 thermal barrier coatings
A study was made of the comparative life of plasma sprayed ZrO2-Y2O3 thermal barrier coatings on NiCrAlY bond coats on Rene 41 in short (4 min) and long (57 min) thermal cycles to 1040 C in a 0.3 Mach flame. Short cycles greatly reduced the life of the ceramic coating in terms of time at temperature as compared to longer cycles. Appearance of the failed coating indicated compressive failure. Failure occurred at the bond coat-ceramic coat junction. At heating rates greater than 550 kw/sq m, the calculated coating detachment stress was in the range of literature values of coating adhesive/cohesive strength. Methods are discussed for decreasing the effect of high heating rate by avoiding compressive stress
Use of fiber like materials to augment the cycle life of thick thermoprotective seal coatings
Some experimental and analytical studies of plasma sprayed ZrO2-Y2O3 thick seal thermoprotective materials over NiCrAlY bond coats with testing to 1040 deg C in a Mach 0.3 burner flame are reviewed. These results indicate the need for material to have both compliance and sufficient strength to function successfully as a thick thermoprotective seal material. Fibrous materials may satisfy many of these requirements. A preliminary analysis simulating the simplified behavior of a 25 mm cylindrical SiO2-fiber material indicated significant radial temperature gradients, a relatively cool interface and generally acceptable stresses over the initial portion of the thermal cycle. Subsequent testing of these fiberlike materials in a Mach 0.3 Jet A/air burner flame confirmed these results
Two-phase choked flow of subcooled oxygen and nitrogen
Data are presented for two-phase critical flow through nozzles. Test results from two converging-diverging nozzles and two separate test facilities are in excellent agreement. The critical flow rate and critical flow pressure ratio data conclusively demonstrate that the principle of corresponding states can be applied to two-phase choked flow through nozzles. Normalizing parameters were developed to correlate these data, and current theories can provide an adequate means for extrapolating to other fluids. Such information can be useful for cryogenic fluid storage applications
- …
