896 research outputs found
Tight bounds for classical and quantum coin flipping
Coin flipping is a cryptographic primitive for which strictly better
protocols exist if the players are not only allowed to exchange classical, but
also quantum messages. During the past few years, several results have appeared
which give a tight bound on the range of implementable unconditionally secure
coin flips, both in the classical as well as in the quantum setting and for
both weak as well as strong coin flipping. But the picture is still incomplete:
in the quantum setting, all results consider only protocols with perfect
correctness, and in the classical setting tight bounds for strong coin flipping
are still missing. We give a general definition of coin flipping which unifies
the notion of strong and weak coin flipping (it contains both of them as
special cases) and allows the honest players to abort with a certain
probability. We give tight bounds on the achievable range of parameters both in
the classical and in the quantum setting.Comment: 18 pages, 2 figures; v2: published versio
Quantum Non-demolition Detection of Single Microwave Photons in a Circuit
Thorough control of quantum measurement is key to the development of quantum
information technologies. Many measurements are destructive, removing more
information from the system than they obtain. Quantum non-demolition (QND)
measurements allow repeated measurements that give the same eigenvalue. They
could be used for several quantum information processing tasks such as error
correction, preparation by measurement, and one-way quantum computing.
Achieving QND measurements of photons is especially challenging because the
detector must be completely transparent to the photons while still acquiring
information about them. Recent progress in manipulating microwave photons in
superconducting circuits has increased demand for a QND detector which operates
in the gigahertz frequency range. Here we demonstrate a QND detection scheme
which measures the number of photons inside a high quality-factor microwave
cavity on a chip. This scheme maps a photon number onto a qubit state in a
single-shot via qubit-photon logic gates. We verify the operation of the device
by analyzing the average correlations of repeated measurements, and show that
it is 90% QND. It differs from previously reported detectors because its
sensitivity is strongly selective to chosen photon number states. This scheme
could be used to monitor the state of a photon-based memory in a quantum
computer.Comment: 5 pages, 4 figures, includes supplementary materia
Secure certification of mixed quantum states with application to two-party randomness generation
We investigate sampling procedures that certify that an arbitrary quantum
state on subsystems is close to an ideal mixed state
for a given reference state , up to errors on a few positions. This
task makes no sense classically: it would correspond to certifying that a given
bitstring was generated according to some desired probability distribution.
However, in the quantum case, this is possible if one has access to a prover
who can supply a purification of the mixed state.
In this work, we introduce the concept of mixed-state certification, and we
show that a natural sampling protocol offers secure certification in the
presence of a possibly dishonest prover: if the verifier accepts then he can be
almost certain that the state in question has been correctly prepared, up to a
small number of errors.
We then apply this result to two-party quantum coin-tossing. Given that
strong coin tossing is impossible, it is natural to ask "how close can we get".
This question has been well studied and is nowadays well understood from the
perspective of the bias of individual coin tosses. We approach and answer this
question from a different---and somewhat orthogonal---perspective, where we do
not look at individual coin tosses but at the global entropy instead. We show
how two distrusting parties can produce a common high-entropy source, where the
entropy is an arbitrarily small fraction below the maximum (except with
negligible probability)
Chosen-ciphertext security from subset sum
We construct a public-key encryption (PKE) scheme whose
security is polynomial-time equivalent to the hardness of the Subset Sum problem. Our scheme achieves the standard notion of indistinguishability against chosen-ciphertext attacks (IND-CCA) and can be used to encrypt messages of arbitrary polynomial length, improving upon a previous construction by Lyubashevsky, Palacio, and Segev (TCC 2010) which achieved only the weaker notion of semantic security (IND-CPA) and whose concrete security decreases with the length of the message being encrypted. At the core of our construction is a trapdoor technique which originates in the work of Micciancio and Peikert (Eurocrypt 2012
Social media, protest cultures and political subjectivities of the Arab spring
This article draws on phenomenological perspectives to present a case against resisting the objectification of cultures of protest and dissent. The generative, self-organizing properties of protest cultures, especially as mobilized through social media, are frequently argued to elude both authoritarian political structures and academic discourse, leading to new political subjectivities or ‘imaginaries’. Stemming from a normative commitment not to over-determine such nascent subjectivities, this view has taken on a heightened resonance in relation to the recent popular uprisings in the Middle East and North Africa. The article argues that this view is based on an invalid assumption that authentic political subjectivities and cultures naturally emerge from an absence of constraint, whether political, journalistic or academic. The valorisation of amorphousness in protest cultures and social media enables affective and political projection, but overlooks politics in its institutional, professional and procedural forms
Microwave Dielectric Loss at Single Photon Energies and milliKelvin Temperatures
The microwave performance of amorphous dielectric materials at very low
temperatures and very low excitation strengths displays significant excess
loss. Here, we present the loss tangents of some common amorphous and
crystalline dielectrics, measured at low temperatures (T < 100 mK) with near
single-photon excitation energies, using both coplanar waveguide (CPW) and
lumped LC resonators. The loss can be understood using a two-level state (TLS)
defect model. A circuit analysis of the half-wavelength resonators we used is
outlined, and the energy dissipation of such a resonator on a multilayered
dielectric substrate is considered theoretically.Comment: 4 pages, 3 figures, submitted to Applied Physics Letter
Multilinear Maps from Obfuscation
International audienceWe provide constructions of multilinear groups equipped with natural hard problems from in-distinguishability obfuscation, homomorphic encryption, and NIZKs. This complements known results on the constructions of indistinguishability obfuscators from multilinear maps in the reverse direction. We provide two distinct, but closely related constructions and show that multilinear analogues of the DDH assumption hold for them. Our first construction is symmetric and comes with a κ-linear map e : G κ −→ G T for prime-order groups G and G T. To establish the hardness of the κ-linear DDH problem, we rely on the existence of a base group for which the (κ − 1)-strong DDH assumption holds. Our second construction is for the asymmetric setting, where e : G 1 × · · · × G κ −→ G T for a collection of κ + 1 prime-order groups G i and G T , and relies only on the standard DDH assumption in its base group. In both constructions the linearity κ can be set to any arbitrary but a priori fixed polynomial value in the security parameter. We rely on a number of powerful tools in our constructions: (probabilistic) indistinguishability obfuscation, dual-mode NIZK proof systems (with perfect soundness, witness indistinguishability and zero knowledge), and additively homomorphic encryption for the group Z + N. At a high level, we enable " bootstrapping " multilinear assumptions from their simpler counterparts in standard cryptographic groups, and show the equivalence of IO and multilinear maps under the existence of the aforementioned primitives
Non-malleable encryption: simpler, shorter, stronger
In a seminal paper, Dolev et al. [15] introduced the notion of non-malleable encryption (NM-CPA). This notion is very intriguing since it suffices for many applications of chosen-ciphertext secure encryption (IND-CCA), and, yet, can be generically built from semantically secure (IND-CPA) encryption, as was shown in the seminal works by Pass et al. [29] and by Choi et al. [9], the latter of which provided a black-box construction. In this paper we investigate three questions related to NM-CPA security: 1. Can the rate of the construction by Choi et al. of NM-CPA from IND-CPA be improved? 2. Is it possible to achieve multi-bit NM-CPA security more efficiently from a single-bit NM-CPA scheme than from IND-CPA? 3. Is there a notion stronger than NM-CPA that has natural applications and can be achieved from IND-CPA security? We answer all three questions in the positive. First, we improve the rate in the scheme of Choi et al. by a factor O(λ), where λ is the security parameter. Still, encrypting a message of size O(λ) would require ciphertext and keys of size O(λ2) times that of the IND-CPA scheme, even in our improved scheme. Therefore, we show a more efficient domain extension technique for building a λ-bit NM-CPA scheme from a single-bit NM-CPA scheme with keys and ciphertext of size O(λ) times that of the NM-CPA one-bit scheme. To achieve our goal, we define and construct a novel type of continuous non-malleable code (NMC), called secret-state NMC, as we show that standard continuous NMCs are not enough for the natural “encode-then-encrypt-bit-by-bit” approach to work. Finally, we introduce a new security notion for public-key encryption that we dub non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA). After showing that NM-SDA is a strict strengthening of NM-CPA and allows for more applications, we nevertheless show that both of our results—(faster) construction from IND-CPA and domain extension from one-bit scheme—also hold for our stronger NM-SDA security. In particular, the notions of IND-CPA, NM-CPA, and NM-SDA security are all equivalent, lying (plausibly, strictly?) below IND-CCA securit
- …
