2,137 research outputs found
A Lagrangian model for the evolution of turbulent magnetic and passive scalar fields
In this paper we present an extension of the \emph{Recent Fluid Deformation
(RFD)} closure introduced by Chevillard and Meneveau (2006) which was developed
for modeling the time evolution of Lagrangian fluctuations in incompressible
Navier-Stokes turbulence. We apply the RFD closure to study the evolution of
magnetic and passive scalar fluctuations. This comparison is especially
interesting since the stretching term for the magnetic field and for the
gradient of the passive scalar are similar but differ by a sign such that the
effect of stretching and compression by the turbulent velocity field is
reversed. Probability density functions (PDFs) of magnetic fluctuations and
fluctuations of the gradient of the passive scalar obtained from the RFD
closure are compared against PDFs obtained from direct numerical simulations
Lagrangian statistics in forced two-dimensional turbulence
We report on simulations of two-dimensional turbulence in the inverse energy
cascade regime. Focusing on the statistics of Lagrangian tracer particles,
scaling behavior of the probability density functions of velocity fluctuations
is investigated. The results are compared to the three-dimensional case. In
particular an analysis in terms of compensated cumulants reveals the transition
from a strong non-Gaussian behavior with large tails to Gaussianity. The
reported computation of correlation functions for the acceleration components
sheds light on the underlying dynamics of the tracer particles.Comment: 8 figures, 1 tabl
Tuning excitability by alloying: the Rh(111)/Ni/H2 + O2 system
The dynamic behavior of the O2 + H2 reaction on a Rh(111) surface alloyed with Ni has been studied in the 10(-5) mbar range using photoemission electron microscopy (PEEM) as a spatial resolving method. For T = 773 K and p(O2) = 5 x 10(-5) mbar the bifurcation diagram has been mapped out as a function of the Ni coverage in a range of 0 ML /= 1.3 ML. A critical Ni coverage of Theta(Ni,crit) = 0.13 monolayers (ML) is required for excitability. In the excitable parameter range pulse trains and irregular chemical wave patterns are found. Whereas the propagation speed of the pulses exhibits no clear-cut dependence on the Ni coverage, the frequency of the local PEEM intensity oscillations increases linearly with Ni coverage in the range from Theta(Ni) = 0.13 ML to Theta(Ni) = 1.3 ML.DF
Dominant gain-of-function mutations in Hsp104p reveal crucial roles for the middle region
Heat-shock protein 104 (Hsp104p) is a protein-remodeling factor that promotes survival after extreme stress by disassembling aggregated proteins and can either promote or prevent the propagation of prions (protein-based genetic elements). Hsp104p can be greatly overexpressed without slowing growth, suggesting tight control of its powerful protein-remodeling activities. We isolated point mutations in Hsp104p that interfere with this control and block cell growth. Each mutant contained alterations in the middle region (MR). Each of the three MR point mutations analyzed in detail had distinct phenotypes. In combination with nucleotide binding site mutations, Hsp104p(T499I) altered bud morphology and caused septin mislocalization, colocalizing with the misplaced septins. Point mutations in the septin Cdc12p suppressed this phenotype, suggesting that it is due to direct Hsp104p–septin interactions. Hsp104p(A503V) did not perturb morphology but stopped cell growth. Remarkably, when expressed transiently, the mutant protein promoted survival after extreme stress as effectively as did wild-type Hsp104p. Hsp104p(A509D) had no deleterious effects on growth or morphology but had a greatly reduced ability to promote thermotolerance. That mutations in an 11-amino acid stretch of the MR have such profound and diverse effects suggests the MR plays a central role in regulating Hsp104p function
Geometry and violent events in turbulent pair dispersion
The statistics of Lagrangian pair dispersion in a homogeneous isotropic flow
is investigated by means of direct numerical simulations. The focus is on
deviations from Richardson eddy-diffusivity model and in particular on the
strong fluctuations experienced by tracers. Evidence is obtained that the
distribution of distances attains an almost self-similar regime characterized
by a very weak intermittency. The timescale of convergence to this behavior is
found to be given by the kinetic energy dissipation time measured at the scale
of the initial separation. Conversely the velocity differences between tracers
are displaying a strongly anomalous behavior whose scaling properties are very
close to that of Lagrangian structure functions. These violent fluctuations are
interpreted geometrically and are shown to be responsible for a long-term
memory of the initial separation. Despite this strong intermittency, it is
found that the mixed moment defined by the ratio between the cube of the
longitudinal velocity difference and the distance attains a statistically
stationary regime on very short timescales. These results are brought together
to address the question of violent events in the distribution of distances. It
is found that distances much larger than the average are reached by pairs that
have always separated faster since the initial time. They contribute a
stretched exponential behavior in the tail of the inter-tracer distance
probability distribution. The tail approaches a pure exponential at large
times, contradicting Richardson diffusive approach. At the same time, the
distance distribution displays a time-dependent power-law behavior at very
small values, which is interpreted in terms of fractal geometry. It is argued
and demonstrated numerically that the exponent converges to one at large time,
again in conflict with Richardson's distribution.Comment: 21 page
Explicit kinetic heterogeneity: mechanistic models for interpretation of labeling data of heterogeneous cell populations
Estimation of division and death rates of lymphocytes in different conditions
is vital for quantitative understanding of the immune system. Deuterium, in the
form of deuterated glucose or heavy water, can be used to measure rates of
proliferation and death of lymphocytes in vivo. Inferring these rates from
labeling and delabeling curves has been subject to considerable debate with
different groups suggesting different mathematical models for that purpose. We
show that the three models that are most commonly used are in fact
mathematically identical and differ only in their interpretation of the
estimated parameters. By extending these previous models, we here propose a
more mechanistic approach for the analysis of data from deuterium labeling
experiments. We construct a model of "kinetic heterogeneity" in which the total
cell population consists of many sub-populations with different rates of cell
turnover. In this model, for a given distribution of the rates of turnover, the
predicted fraction of labeled DNA accumulated and lost can be calculated. Our
model reproduces several previously made experimental observations, such as a
negative correlation between the length of the labeling period and the rate at
which labeled DNA is lost after label cessation. We demonstrate the reliability
of the new explicit kinetic heterogeneity model by applying it to artificially
generated datasets, and illustrate its usefulness by fitting experimental data.
In contrast to previous models, the explicit kinetic heterogeneity model 1)
provides a mechanistic way of interpreting labeling data; 2) allows for a
non-exponential loss of labeled cells during delabeling, and 3) can be used to
describe data with variable labeling length
Density-PDFs and Lagrangian Statistics of highly compressible Turbulence
We report on probability-density-functions (PDF) of the mass density in
numerical simulations of highly compressible hydrodynamic flows and the
corresponding structure formation of Lagrangian particles advected by the
flows. Numerical simulations were performed with collocation points and
2 million tracer particles integrated over several dynamical times. We propose
a connection between the PDF of the Lagrangian tracer particles and the
predicted log-normal distribution of the density fluctuations in isothermal
systems
Vertical pairing of identical particles suspended in the plasma sheath
It is shown experimentally that vertical pairing of two identical
microspheres suspended in the sheath of a radio-frequency (rf) discharge at low
gas pressures (a few Pa), appears at a well defined instability threshold of
the rf power. The transition is reversible, but with significant hysteresis on
the second stage. A simple model, which uses measured microsphere resonance
frequencies and takes into account besides Coulomb interaction between
negatively charged microspheres also their interaction with positive ion wake
charges, seems to explain the instability threshold quite well.Comment: 4 pages, 6 figures. to appear in Phys. Rev. Lett. 86, May 14th (2001
The use of indigenous knowledge in development: problems and challenges
The use of indigenous knowledge has been seen by many as an alternative way of promoting development in poor rural communities in many parts of the world. By reviewing much of the recent work on indigenous knowledge, the paper suggests that a number of problems and tensions has resulted in indigenous knowledge not being as useful as hoped for or supposed. These include problems emanating from a focus on the (arte)factual; binary tensions between western science and indigenous knowledge systems; the problem of differentiation and power relations; the romanticization of indigenous knowledge; and the all too frequent decontextualization of indigenous knowledge
Fully developed turbulence and the multifractal conjecture
We review the Parisi-Frisch MultiFractal formalism for
Navier--Stokes turbulence with particular emphasis on the issue of
statistical fluctuations of the dissipative scale. We do it for both Eulerian
and Lagrangian Turbulence. We also show new results concerning the application
of the formalism to the case of Shell Models for turbulence. The latter case
will allow us to discuss the issue of Reynolds number dependence and the role
played by vorticity and vortex filaments in real turbulent flows.Comment: Special Issue dedicated to E. Brezin and G. Paris
- …
