4,255 research outputs found

    Optically excited states in positronium

    Get PDF
    Optical excitation are reported of the 1 3S-2 3P transition in positronium, and a second excitation from n=2 to higher n states. The experiment used light from two pulsed dye lasers. Changes in the positronium annihilation rate during and after the laser pulse were used to deduce the excited state populations. The n=2 level was found to be saturable and excitable to a substantial fraction of n=2 positronium to higher levels. Preliminary spectroscopic measurements were performed on n=14 and n=15 positronium

    Detection of Planetary and Stellar Companions to Neighboring Stars via a Combination of Radial Velocity and Direct Imaging Techniques

    Get PDF
    13 pages, 6 figures, 4 tables, accepted for publication in the Astronomical Journal (submitted 25 Feb 2019; accepted 28 April 2019). Machine readable tables and Posteriors from the RadVel fits are available here: http://stephenkane.net/rvfits.tarThe sensitivities of radial velocity (RV) surveys for exoplanet detection are extending to increasingly longer orbital periods, where companions with periods of several years are now being regularly discovered. Companions with orbital periods that exceed the duration of the survey manifest in the data as an incomplete orbit or linear trend, a feature that can either present as the sole detectable companion to the host star, or as an additional signal overlain on the signatures of previously discovered companion(s). A diagnostic that can confirm or constrain scenarios in which the trend is caused by an unseen stellar rather than planetary companion is the use of high-contrast imaging observations. Here, we present RV data from the Anglo-Australian Planet Search (AAPS) for 20 stars that show evidence of orbiting companions. Of these, six companions have resolved orbits, with three that lie in the planetary regime. Two of these (HD 92987b and HD 221420b) are new discoveries. Follow-up observations using the Differential Speckle Survey Instrument (DSSI) on the Gemini South telescope revealed that 5 of the 20 monitored companions are likely stellar in nature. We use the sensitivity of the AAPS and DSSI data to place constraints on the mass of the companions for the remaining systems. Our analysis shows that a planetary-mass companion provides the most likely self-consistent explanation of the data for many of the remaining systems.Peer reviewedFinal Accepted Versio

    J-band spectroscopy of cataclysmic variables

    Get PDF
    We present time-resolved, J-band (1.025–1.340 μm) infrared spectra of the short-period dwarf novae (DNe) WZ Sge and VY Aqr, and single spectra of the short-period DN EF Peg and the nova-like variable PX And. There is some evidence in the spectra of VY Aqr and EF Peg that we have detected the secondary star, both in the continuum slope and also through the possible presence of spectral features. The spectra of WZ Sge and PX And, on the other hand, show no evidence for the secondary star, with upper limits for its contribution to the J-band light of 10 and 20 per cent respectively. The spectral type of the secondary in WZ Sge is constrained to be later than M7.5V. Using skew mapping, we have been able to derive a value for the radial velocity semi-amplitude of the secondary star in VY Aqr of KR=320±70 km s−1, which in conjunction with KW from Thorstensen & Taylor gives a mass ratio of q=0.15±0.04

    Ab initio calculation of the neutron-proton mass difference

    Get PDF
    The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14\% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300300 kilo-electron volts, which is greater than 00 by 55 standard deviations. We also determine the splittings in the Σ\Sigma, Ξ\Xi, DD and Ξcc\Xi_{cc} isospin multiplets, exceeding in some cases the precision of experimental measurements.Comment: 57 pages, 15 figures, 6 tables, revised versio

    Holistic approach to dissolution kinetics : linking direction-specific microscopic fluxes, local mass transport effects and global macroscopic rates from gypsum etch pit analysis

    Get PDF
    Dissolution processes at single crystal surfaces often involve the initial formation and expansion of localized, characteristic (faceted) etch-pits at defects, in an otherwise comparatively unreactive surface. Using natural gypsum single crystal as an example, a simple but powerful morphological analysis of these characteristic etch pit features is proposed that allows important questions concerning dissolution kinetics to be addressed. Significantly, quantitative mass transport associated with reactive microscale interfaces in quiescent solution (well known in the field of electrochemistry at ultramicroelectrodes) allows the relative importance of diffusion compared to surface kinetics to be assessed. Furthermore, because such mass transport rates are high, much faster surface kinetics can be determined than with existing dissolution methods. For the case of gypsum, surface processes are found to dominate the kinetics at early stages of the dissolution process (small etch pits) on the cleaved (010) surface. However, the contribution from mass transport becomes more important with time due to the increased area of the reactive zones and associated decrease in mass transport rate. Significantly, spatial heterogeneities in both surface kinetics and mass transport effects are identified, and the morphology of the characteristic etch features reveal direction-dependent dissolution kinetics that can be quantified. Effective dissolution velocities normal to the main basal (010) face are determined, along with velocities for the movement of [001] and [100] oriented steps. Inert electrolyte enhances dissolution velocities in all directions (salting in), but a striking new observation is that the effect is direction-dependent. Studies of common ion effects reveal that Ca2+ has a much greater impact in reducing dissolution rates compared to SO42−. With this approach, the new microscopic observations can be further analysed to obtain macroscopic dissolution rates, which are found to be wholly consistent with previous bulk measurements. The studies are thus important in bridging the gap between microscopic phenomena and macroscopic measurements

    Implementation of quantum search algorithm using classical Fourier optics

    Get PDF
    We report on an experiment on Grover's quantum search algorithm showing that {\em classical waves} can search a NN-item database as efficiently as quantum mechanics can. The transverse beam profile of a short laser pulse is processed iteratively as the pulse bounces back and forth between two mirrors. We directly observe the sought item being found in N\sim\sqrt{N} iterations, in the form of a growing intensity peak on this profile. Although the lack of quantum entanglement limits the {\em size} of our database, our results show that entanglement is neither necessary for the algorithm itself, nor for its efficiency.Comment: 4 pages, 3 figures; minor revisions plus extra referenc

    Compton Scattering Cross Section on the Proton at High Momentum Transfer

    Get PDF
    Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/ 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.Comment: 5 pages, 5 figure

    Facial Cosmetics and Attractiveness: Comparing the Effect Sizes of Professionally-Applied Cosmetics and Identity

    Get PDF
    Forms of body decoration exist in all human cultures. However, in Western societies, women are more likely to engage in appearance modification, especially through the use of facial cosmetics. How effective are cosmetics at altering attractiveness? Previous research has hinted that the effect is not large, especially when compared to the variation in attractiveness observed between individuals due to differences in identity. In order to build a fuller understanding of how cosmetics and identity affect attractiveness, here we examine how professionally-applied cosmetics alter attractiveness and compare this effect with the variation in attractiveness observed between individuals. In Study 1, 33 YouTube models were rated for attractiveness before and after the application of professionally-applied cosmetics. Cosmetics explained a larger proportion of the variation in attractiveness compared with previous studies, but this effect remained smaller than variation caused by differences in attractiveness between individuals. Study 2 replicated the results of the first study with a sample of 45 supermodels, with the aim of examining the effect of cosmetics in a sample of faces with low variation in attractiveness between individuals. While the effect size of cosmetics was generally large, between-person variability due to identity remained larger. Both studies also found interactions between cosmetics and identity-more attractive models received smaller increases when cosmetics were worn. Overall, we show that professionally- applied cosmetics produce a larger effect than self-applied cosmetics, an important theoretical consideration for the field. However, the effect of individual differences in facial appearance is ultimately more important in perceptions of attractiveness

    Large Momentum Transfer Measurements of the Deuteron Elastic Structure Function A(Q^2) at Jefferson Laboratory

    Full text link
    The deuteron elastic structure function A(Q^2) has been extracted in the Q^2 range 0.7 to 6.0 (GeV/c)^2 from cross section measurements of elastic electron-deuteron scattering in coincidence using the Hall A Facility of Jefferson Laboratory. The data are compared to theoretical models based on the impulse approximation with inclusion of meson-exchange currents, and to predictions of quark dimensional scaling and perturbative quantum chromodynamicsComment: Submitted to Physical Review Letter

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care
    corecore