1,860 research outputs found
Severe storm identification with satellite microwave radiometry: An initial investigation with Nimbus-7 SMMR data
The severe weather characteristics of convective storms as observed by the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) are investigated. Low 37 GHz brightness temperatures (due to scattering of upwelling radiation by precipitation size ice) are related to the occurrence of severe weather (large hail, strong winds or wind damage, tornadoes and funnel clouds) within one hour of the satellite observation time. During 1979 and 1980 over the United States there were 263 storms which had very cold 37 GHz signatures. Of these storms 15% were severe. The SMMR detected hail, wind, and tornadic storms equally well. Critical Success Indices (CSI's) of 0.32, 0.48, and 0.38 are achieved for the thresholding of severe vs. nonsevere low brightness temperature events during 1979, 1980, and the two years combined, respectively. Such scores are comparable to skill scores for early radar detection methods. These results suggest that a future geostationary passive microwave imaging capability at 37 GHz, with sufficient spatial and temporal resolution, would allow the detection of severe convective storms. This capability would provide a useful complement to radar, especially in areas not covered by radar
Development of optimum clamp combinations for strap-down inertial measuring units with field replaceable sensors
Optimum clamp combinations for strap down inertial measuring units with field replaceable sensor
Photon counting compressive depth mapping
We demonstrate a compressed sensing, photon counting lidar system based on
the single-pixel camera. Our technique recovers both depth and intensity maps
from a single under-sampled set of incoherent, linear projections of a scene of
interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional
reconstructions are required to image a three-dimensional scene. We demonstrate
intensity imaging and depth mapping at 256 x 256 pixel transverse resolution
with acquisition times as short as 3 seconds. We also show novelty filtering,
reconstructing only the difference between two instances of a scene. Finally,
we acquire 32 x 32 pixel real-time video for three-dimensional object tracking
at 14 frames-per-second.Comment: 16 pages, 8 figure
Inverse Scattering at a Fixed Quasi-Energy for Potentials Periodic in Time
We prove that the scattering matrix at a fixed quasi--energy determines
uniquely a time--periodic potential that decays exponentially at infinity. We
consider potentials that for each fixed time belong to in space. The
exponent 3/2 is critical for the singularities of the potential in space. For
this singular class of potentials the result is new even in the
time--independent case, where it was only known for bounded exponentially
decreasing potentials.Comment: In this revised version I give a more detailed motivation of the
class of potentials that I consider and I have corrected some typo
Neurophysiology
Contains reports on three research projects.National Institutes of Health (Grant 5 RO1 NB-04985-03)Instrumentation Laboratory under the auspices of DSR Project 55-257Bioscience Division of National Aeronautics and Space Administration through Contract NSR 22-009-138Bell Telephone Laboratories, Inc. (Grant)The Teagle Foundation, Inc. (Grant)U. S. Air Force (Aerospace Medical Division) under Contract AF33(615)-388
The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients
We have previously shown that exon 1 of the huntingtin gene does not always splice to exon 2 resulting in the production of a small polyadenylated mRNA (HTTexon1) that encodes the highly pathogenic exon 1 HTT protein. The level of this read-through product is proportional to CAG repeat length and is present in all knock-in mouse models of Huntington’s disease (HD) with CAG lengths of 50 and above and in the YAC128 and BACHD mouse models, both of which express a copy of the human HTT gene. We have now developed specific protocols for the quantitative analysis of the transcript levels of HTTexon1 in human tissue and applied these to a series of fibroblast lines and post-mortem brain samples from individuals with either adult-onset or juvenile-onset HD. We found that the HTTexon1 mRNA is present in fibroblasts from juvenile HD patients and can also be readily detected in the sensory motor cortex, hippocampus and cerebellum of post-mortem brains from HD individuals, particularly in those with early onset disease. This finding will have important implications for strategies to lower mutant HTT levels in patients and the design of future therapeutics
Excitation of Small Quantum Systems by High-Frequency Fields
The excitation by a high frequency field of multi--level quantum systems with
a slowly varying density of states is investigated. A general approach to study
such systems is presented. The Floquet eigenstates are characterized on several
energy scales. On a small scale, sharp universal quasi--resonances are found,
whose shape is independent of the field parameters and the details of the
system. On a larger scale an effective tight--binding equation is constructed
for the amplitudes of these quasi--resonances. This equation is non--universal;
two classes of examples are discussed in detail.Comment: 4 pages, revtex, no figure
On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum
We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum
of H is semibounded and discrete, and the eigenvalues behave as E_n~n^\alpha,
with 0<\alpha<1. In particular, the gaps between successive eigenvalues decay
as n^{\alpha-1}. V(t) is supposed to be periodic, bounded, continuously
differentiable in the strong sense and such that the matrix entries with
respect to the spectral decomposition of H obey the estimate
|V(t)_{m,n}|0,
p>=1 and \gamma=(1-\alpha)/2. We show that the energy diffusion exponent can be
arbitrarily small provided p is sufficiently large and \epsilon is small
enough. More precisely, for any initial condition \Psi\in Dom(H^{1/2}), the
diffusion of energy is bounded from above as _\Psi(t)=O(t^\sigma) where
\sigma=\alpha/(2\ceil{p-1}\gamma-1/2). As an application we consider the
Hamiltonian H(t)=|p|^\alpha+\epsilon*v(\theta,t) on L^2(S^1,d\theta) which was
discussed earlier in the literature by Howland
The SKA Particle Array Prototype: The First Particle Detector at the Murchison Radio-astronomy Observatory
We report on the design, deployment, and first results from a scintillation
detector deployed at the Murchison Radio-astronomy Observatory (MRO). The
detector is a prototype for a larger array -- the Square Kilometre Array
Particle Array (SKAPA) -- planned to allow the radio-detection of cosmic rays
with the Murchison Widefield Array and the low-frequency component of the
Square Kilometre Array. The prototype design has been driven by stringent
limits on radio emissions at the MRO, and to ensure survivability in a desert
environment. Using data taken from Nov.\ 2018 to Feb.\ 2019, we characterize
the detector response while accounting for the effects of temperature
fluctuations, and calibrate the sensitivity of the prototype detector to
through-going muons. This verifies the feasibility of cosmic ray detection at
the MRO. We then estimate the required parameters of a planned array of eight
such detectors to be used to trigger radio observations by the Murchison
Widefield Array.Comment: 17 pages, 14 figures, 3 table
Neurophysiology
Contains reports on two research projects.Teagle Foundation, IncorporatedNational Institutes of HealthBell Telephone Laboratories, Incorporate
- …
