5,979 research outputs found

    Coherent-Classical Estimation for Linear Quantum Systems

    Full text link
    We study a coherent-classical estimation scheme for a class of linear quantum systems, where the estimator is a mixed quantum-classical system that may or may not involve coherent feedback. We show that when the quantum plant or the quantum part of the estimator (coherent controller) is an annihilation operator only system, coherent-classical estimation without coherent feedback can provide no improvement over purely-classical estimation. Otherwise, coherent-classical estimation without feedback can be better than classical-only estimation for certain homodyne detector angles, although the former is inferior to the latter for the best choice of homodyne detector angle. Moreover, we show that coherent-classical estimation with coherent feedback is no better than classical-only estimation, when both the plant and the coherent controller are annihilation operator only systems. Otherwise, coherent-classical estimation with coherent feedback can be superior to purely-classical estimation, and in this case, the former is better than the latter for the optimal choice of homodyne detector angle.Comment: Minor corrections; 10 pages, 13 figures, journal version. arXiv admin note: substantial text overlap with arXiv:1403.534

    Robust Filtering for Adaptive Homodyne Estimation of Continuously Varying Optical Phase

    Full text link
    Recently, it has been demonstrated experimentally that adaptive estimation of a continuously varying optical phase provides superior accuracy in the phase estimate compared to static estimation. Here, we show that the mean-square error in the adaptive phase estimate may be further reduced for the stochastic noise process considered by using an optimal Kalman filter in the feedback loop. Further, the estimation process can be made robust to fluctuations in the underlying parameters of the noise process modulating the system phase to be estimated. This has been done using a guaranteed cost robust filter.Comment: 5 pages, 6 figures, Proceedings of the 2012 Australian Control Conferenc

    Robust Estimation of Optical Phase Varying as a Continuous Resonant Process

    Full text link
    It is well-known that adaptive homodyne estimation of continuously varying optical phase provides superior accuracy in the phase estimate as compared to adaptive or non-adaptive static estimation. However, most phase estimation schemes rely on precise knowledge of the underlying parameters of the system under measurement, and performance deteriorates significantly with changes in these parameters; hence it is desired to develop robust estimation techniques immune to such uncertainties. In related works, we have already shown how adaptive homodyne estimation can be made robust to uncertainty in an underlying parameter of the phase varying as a simplistic Ornstein-Uhlenbeck stochastic noise process. Here, we demonstrate robust phase estimation for a more complicated resonant noise process using a guaranteed cost robust filter.Comment: 5 pages, 10 figures, Proceedings of the 2013 Multi-Conference on Systems and Contro

    Diamond chemical vapor deposition on optical fibers for fluorescence waveguiding

    Full text link
    A technique has been developed for depositing diamond crystals on the endfaces of optical fibers and capturing the fluorescence generated by optically active defects in the diamond into the fiber. This letter details the diamond growth on optical fibers and transmission of fluorescence through the fiber from the nitrogen-vacancy (N-V) color center in diamond. Control of the concentration of defects incorporated during the chemical vapor deposition (CVD) growth process is also demonstrated. These are the first critical steps in developing a fiber coupled single photon source based on optically active defect centers in diamond.Comment: 10 pages, 3 figure

    Improved mirror position estimation using resonant quantum smoothing

    Get PDF
    Quantum parameter estimation, the ability to precisely obtain a classical value in a quantum system, is very important to many key quantum technologies. Many of these technologies rely on an optical probe, either coherent or squeezed states to make a precise measurement of a parameter ultimately limited by quantum mechanics. We use this technique to theoretically model, simulate and validate by experiment the measurement and precise estimation of the position of a cavity mirror. In non-resonant systems, the achieved estimation enhancement from quantum smoothing over optimal filtering has not exceeded a factor two, even when squeezed state probes were used. Using a coherent state probe, we show that using quantum smoothing on a mechanically resonant structure driven by a resonant forcing function can result significantly greater improvement in parameter estimation than with non-resonant systems. In this work, we show that it is possible to achieve a smoothing improvement by a factor in excess of three times over optimal filtering. By using intra-cavity light as the probe we obtain finer precision than has been achieved with the equivalent quantum resources in free-space.Comment: 14 pages, 9 figures and 1 tabl

    Coherent-Classical Estimation versus Purely-Classical Estimation for Linear Quantum Systems

    Full text link
    We consider a coherent-classical estimation scheme for a class of linear quantum systems. It comprises an estimator that is a mixed quantum-classical system without involving coherent feedback. The estimator yields a classical estimate of a variable for the quantum plant. We demonstrate that for a passive plant that can be characterized by annihilation operators only, such coherent-classical estimation provides no improvement over purely-classical estimation. An example is also given which shows that if the plant is not assumed to be an annihilation operator only quantum system, it is possible to get better estimates with such coherent-classical estimation compared with purely-classical estimation.Comment: 7 pages, 5 figures. Minor corrections. Accepted, 2014 Conference on Decision and Contro

    Homodyne locking of a squeezer

    Full text link
    We report on the successful implementation of a new approach to locking the frequencies of an OPO-based squeezed-vacuum source and its driving laser. The technique allows the simultaneous measurement of the phase-shifts induced by a cavity, which may be used for the purposes of frequency-locking, as well as the simultaneous measurement of the sub-quantum-noise-limited (sub-QNL) phase quadrature output of the OPO. The homodyne locking technique is cheap, easy to implement and has the distinct advantage that subsequent homodyne measurements are automatically phase-locked. The homodyne locking technique is also unique in that it is a sub-QNL frequency discriminator.Comment: Accepted to Optics Letter
    corecore