7,048 research outputs found

    Parafermions in a Kagome lattice of qubits for topological quantum computation

    Full text link
    Engineering complex non-Abelian anyon models with simple physical systems is crucial for topological quantum computation. Unfortunately, the simplest systems are typically restricted to Majorana zero modes (Ising anyons). Here we go beyond this barrier, showing that the Z4\mathbb{Z}_4 parafermion model of non-Abelian anyons can be realized on a qubit lattice. Our system additionally contains the Abelian D(Z4)D(\mathbb{Z}_4) anyons as low-energetic excitations. We show that braiding of these parafermions with each other and with the D(Z4)D(\mathbb{Z}_4) anyons allows the entire d=4d=4 Clifford group to be generated. The error correction problem for our model is also studied in detail, guaranteeing fault-tolerance of the topological operations. Crucially, since the non-Abelian anyons are engineered through defect lines rather than as excitations, non-Abelian error correction is not required. Instead the error correction problem is performed on the underlying Abelian model, allowing high noise thresholds to be realized.Comment: 11+10 pages, 14 figures; v2: accepted for publication in Phys. Rev. X; 4 new figures, performance of phase-gate explained in more detai

    Milieu-adopted in vitro and in vivo differentiation of mesenchymal tissues derived from different adult human CD34-negative progenitor cell clones

    Get PDF
    Adult mesenchymal stem cells with multilineage differentiation potentially exist in the bone marrow, but have also been isolated from the peripheral blood. The differentiation of stem cells after leaving their niches depends predominately on the local milieu and its new microenvironment, and is facilitated by soluble factors but also by the close cell-cell interaction in a three-dimensional tissue or organ system. We have isolated CD34-negative, mesenchymal stem cell lines from human bone marrow and peripheral blood and generated monoclonal cell populations after immortalization with the SV40 large T-antigen. The cultivation of those adult stem cell clones in an especially designed in vitro environment, including self-constructed glass capillaries with defined growth conditions, leads to the spontaneous establishment of pleomorphic three-dimensional cell aggregates ( spheroids) from the monoclonal cell population, which consist of cells with an osteoblast phenotype and areas of mineralization along with well-vascularized tissue areas. Modifications of the culture conditions favored areas of bone-like calcifications. After the transplantation of the at least partly mineralized human spheroids into different murine soft tissue sites but also a dorsal skinfold chamber, no further bone formation could be observed, but angiogenesis and neovessel formation prevailed instead, enabling the transplanted cells and cell aggregates to survive. This study provides evidence that even monoclonal adult human CD34-negative stem cells from the bone marrow as well as peripheral blood can potentially differentiate into different mesenchymal tissues depending on the local milieu and responding to the needs within the microenvironment. Copyright (C) 2005 S. Karger AG, Basel

    Solomonoff Induction Violates Nicod's Criterion

    Full text link
    Nicod's criterion states that observing a black raven is evidence for the hypothesis H that all ravens are black. We show that Solomonoff induction does not satisfy Nicod's criterion: there are time steps in which observing black ravens decreases the belief in H. Moreover, while observing any computable infinite string compatible with H, the belief in H decreases infinitely often when using the unnormalized Solomonoff prior, but only finitely often when using the normalized Solomonoff prior. We argue that the fault is not with Solomonoff induction; instead we should reject Nicod's criterion.Comment: ALT 201

    CFT Duals for Extreme Black Holes

    Get PDF
    It is argued that the general four-dimensional extremal Kerr-Newman-AdS-dS black hole is holographically dual to a (chiral half of a) two-dimensional CFT, generalizing an argument given recently for the special case of extremal Kerr. Specifically, the asymptotic symmetries of the near-horizon region of the general extremal black hole are shown to be generated by a Virasoro algebra. Semiclassical formulae are derived for the central charge and temperature of the dual CFT as functions of the cosmological constant, Newton's constant and the black hole charges and spin. We then show, assuming the Cardy formula, that the microscopic entropy of the dual CFT precisely reproduces the macroscopic Bekenstein-Hawking area law. This CFT description becomes singular in the extreme Reissner-Nordstrom limit where the black hole has no spin. At this point a second dual CFT description is proposed in which the global part of the U(1) gauge symmetry is promoted to a Virasoro algebra. This second description is also found to reproduce the area law. Various further generalizations including higher dimensions are discussed.Comment: 18 pages; v2 minor change

    Visualization of leukocyte transendothelial and interstitial migration using reflected light oblique transillumination in intravital video microscopy

    Get PDF
    Dynamic visualization of the intravascular events leading to the extravasation of leukocytes into tissues by intravital microscopy has significantly expanded our understanding of the underlying molecular processes. In contrast, the detailed observation of leukocyte transendothelial and interstitial migration in vivo has been hampered by the poor image contrast of cells within turbid media that is obtainable by conventional brightfield microscopy. Here we present a microscopic method, termed reflected light oblique transillumination microscopy, that makes use of the optical interference phenomena generated by oblique transillumination to visualize subtle gradients of refractive indices within tissues for enhanced image contrast. Using the mouse cremaster muscle, we demonstrate that this technique makes possible the reliable quantification of extravasated leukocytes as well as the characterization of morphological phenomena of leukocyte transendothelial and interstitial migration

    MDL Convergence Speed for Bernoulli Sequences

    Get PDF
    The Minimum Description Length principle for online sequence estimation/prediction in a proper learning setup is studied. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying convergence with probability one, and (b) it additionally specifies the convergence speed. For MDL, in general one can only have loss bounds which are finite but exponentially larger than those for Bayes mixtures. We show that this is even the case if the model class contains only Bernoulli distributions. We derive a new upper bound on the prediction error for countable Bernoulli classes. This implies a small bound (comparable to the one for Bayes mixtures) for certain important model classes. We discuss the application to Machine Learning tasks such as classification and hypothesis testing, and generalization to countable classes of i.i.d. models.Comment: 28 page

    Enhanced thermal stability of the toric code through coupling to a bosonic bath

    Full text link
    We propose and study a model of a quantum memory that features self-correcting properties and a lifetime growing arbitrarily with system size at non-zero temperature. This is achieved by locally coupling a 2D L x L toric code to a 3D bath of bosons hopping on a cubic lattice. When the stabilizer operators of the toric code are coupled to the displacement operator of the bosons, we solve the model exactly via a polaron transformation and show that the energy penalty to create anyons grows linearly with L. When the stabilizer operators of the toric code are coupled to the bosonic density operator, we use perturbation theory to show that the energy penalty for anyons scales with ln(L). For a given error model, these energy penalties lead to a lifetime of the stored quantum information growing respectively exponentially and polynomially with L. Furthermore, we show how to choose an appropriate coupling scheme in order to hinder the hopping of anyons (and not only their creation) with energy barriers that are of the same order as the anyon creation gaps. We argue that a toric code coupled to a 3D Heisenberg ferromagnet realizes our model in its low-energy sector. Finally, we discuss the delicate issue of the stability of topological order in the presence of perturbations. While we do not derive a rigorous proof of topological order, we present heuristic arguments suggesting that topological order remains intact when perturbative operators acting on the toric code spins are coupled to the bosonic environment.Comment: This manuscript has some overlap with arXiv:1209.5289. However, a different model is the focus of the current work. Since this model is exactly solvable, it allows a clearer demonstration of the principle behind our quantum memory proposal. v2: minor changes and additional referenc
    corecore