6,336 research outputs found
The Rachel Carson Letters and the Making of Silent Spring
Environment, conservation, green, and kindred movements look back to Rachel Carson’s 1962 book Silent Spring as a milestone. The impact of the book, including on government, industry, and civil society, was immediate and substantial, and has been extensively described; however, the provenance of the book has been less thoroughly examined. Using Carson’s personal correspondence, this paper reveals that the primary source for Carson’s book was the extensive evidence and contacts compiled by two biodynamic farmers, Marjorie Spock and Mary T. Richards, of Long Island, New York. Their evidence was compiled for a suite of legal actions (1957-1960) against the U.S. Government and that contested the aerial spraying of dichlorodiphenyltrichloroethane (DDT). During Rudolf Steiner’s lifetime, Spock and Richards both studied at Steiner’s Goetheanum, the headquarters of Anthroposophy, located in Dornach, Switzerland. Spock and Richards were prominent U.S. anthroposophists, and established a biodynamic farm under the tutelage of the leading biodynamics exponent of the time, Dr. Ehrenfried Pfeiffer. When their property was under threat from a government program of DDT spraying, they brought their case, eventually lost it, in the process spent US$100,000, and compiled the evidence that they then shared with Carson, who used it, and their extensive contacts and the trial transcripts, as the primary input for Silent Spring. Carson attributed to Spock, Richards, and Pfeiffer, no credit whatsoever in her book. As a consequence, the organics movement has not received the recognition, that is its due, as the primary impulse for Silent Spring, and it is, itself, unaware of this provenance
Next Generation NASA Hazard Detection System Development
The SPLICE project is continuing NASAs efforts to develop precision landing GN&C technologies for future lander missions. One of those technologies is the next generation Hazard Detection (HD) System, which consists of a new HD Lidar and HD Algorithms. The HD System is a modular system that will be adapted to meet specific mission needs in the future. This paper presents the design approach, the nominal concept of operations for which the first prototype is being designed, and the expected performance of the system
Intra-individual movement variability during skill transitions: A useful marker?
Applied research suggests athletes and coaches need to be challenged in knowing when and how much a movement should be consciously attended to. This is exacerbated when the skill is in transition between two more stable states, such as when an already well learnt skill is being refined. Using existing theory and research, this paper highlights the potential application of movement variability as a tool to inform a coach’s decision-making process when implementing a systematic approach to technical refinement. Of particular interest is the structure of co-variability between mechanical degrees-of-freedom (e.g., joints) within the movement system’s entirety when undergoing a skill transition. Exemplar data from golf are presented, demonstrating the link between movement variability and mental effort as an important feature of automaticity, and thus intervention design throughout the different stages of refinement. Movement variability was shown to reduce when mental effort directed towards an individual aspect of the skill was high (target variable). The opposite pattern was apparent for variables unrelated to the technical refinement. Therefore, two related indicators, movement variability and mental effort, are offered as a basis through which the evaluation of automaticity during technical refinements may be made
Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing
A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor
D-Dimensional Radiative Plasma: A Kinetic Approach
The covariant kinetic approach for the radiative plasma, a mixture of a
relativistic moving gas plus radiation quanta (photons, neutrinos, or
gravitons) is generalized to D spatial dimensions. The operational and physical
meaning of Eckart's temperature is reexamined and the D-dimensional expressions
for the transport coefficients (heat conduction, bulk and shear viscosity) are
explicitly evaluated to first order in the mean free time of the radiation
quanta. Weinberg's conclusion that the mixture behaves like a relativistic
imperfect simple fluid (in Eckart's formulation) depends neither on the number
of spatial dimensions nor on the details of the collisional term. The case of
Thomson scaterring is studied in detail, and some consequences for higher
dimensional cosmologies are also discussed.Comment: 28 pages, 1 figure, uses REVTE
Quantum Fluctuations around the Electroweak Sphaleron
We present an analysis of the quantum fluctuations around the electroweak
sphaleron and calculate the associated determinant which gives the 1--loop
correction to the sphaleron transition rate. The calculation differs in various
technical aspects from a previous analysis by Carson et al. so that it can be
considered as independent. The numerical results differ also -- by several
orders of magnitude -- from those of this previous analysis; we find that the
sphaleron transition rate is much less suppressed than found previously.Comment: DO-TH-93/19 39 pages, 5 figures (available on request as Postscript
files or via Fax or mail), LaTeX, no macros neede
Sphaleron Effects Near the Critical Temperature
We discuss one-loop radiative corrections to the sphaleron-induced baryon
number-violating transition rate near the electroweak phase transition in the
standard model. We emphasize that in the case of a first-order transition a
rearrangement of the loop expansion is required close to the transition
temperature. The corresponding expansion parameter, the effective 3-dimensional
gauge coupling approaches a finite dependent value at the critical
temperature.
The
(Higgs mass) dependence of the 1-loop radiative corrections is discussed in
the framework of the heat kernel method. Radiative corrections are small
compared to the leading sphaleron contribution as long as the Higgs mass is
small compared to the W mass. To 1-loop accuracy, there is no Higgs mass range
compatible with experimental limits where washing-out of a B+L asymmetry could
be avoided for the minimal standard model with one Higgs doublet.Comment: 17 pages, RevTeX, (4 figures in a separate uuencoded file),
HD-THEP-93-23re
COBALT CoOperative Blending of Autonomous Landing Technology
COBALT is a terrestrial test platform for development and maturation of GN&C (Guidance, Navigation and Control) technologies for PL&HA (Precision Landing and Hazard Avoidance). The project is developing a third generation, Langley Navigation Doppler Lidar (NDL) for ultra-precise velocity and range measurements, which will be integrated and tested with the JPL Lander Vision System (LVS) for Terrain Relative Navigation (TRN) position estimates. These technologies together provide navigation that enables controlled precision landing. The COBALT hardware will be integrated in 2017 into the GN&C subsystem of the Xodiac rocket-propulsive Vertical Test Bed (VTB) developed by Masten Space Systems (MSS), and two terrestrial flight campaigns will be conducted: one open-loop (i.e., passive) and one closed-loop (i.e., active)
Low temperature spin fluctuations in geometrically frustrated Yb3Ga5O12
In the garnet structure compound Yb3Ga5O12, the Yb3+ ions (ground state
effective spin S' = 1/2) are situated on two interpenetrating corner sharing
triangular sublattices such that frustrated magnetic interactions are possible.
Previous specific heat measurements evidenced the development of short range
magnetic correlations below 0.5K and a lambda-transition at 54mK (Filippi et
al. J. Phys. C: Solid State Physics 13 (1980) 1277). From 170-Yb M"ossbauer
spectroscopy measurements down to 36mK, we find there is no static magnetic
order at temperatures below that of the lambda-transition. Below 0.3K, the
fluctuation frequency of the short range correlated Yb3+ moments progressively
slows down and as the temperature tends to 0, the frequency tends to a
quasi-saturated value of 3 x 10^9 s^-1. We also examined the Yb3+ paramagnetic
relaxation rates up to 300K using 172-Yb perturbed angular correlation
measurements: they evidence phonon driven processes.Comment: 6 pages, 5 figure
Ginsparg-Wilson Fermions: A study in the Schwinger Model
Qualitative features of Ginsparg-Wilson fermions, as formulated by Neuberger,
coupled to two dimensional U(1) gauge theory are studied. The role of the
Wilson mass parameter in changing the number of massless flavors in the theory
and its connection with the index of the Dirac operator is studied. Although
the index of the Dirac operator is not related to the geometric definition of
the topological charge for strong couplings, the two start to agree as soon as
one goes to moderately weak couplings. This produces the desired singularity in
the quenched chiral condensate which appears to be very difficult to reproduce
with staggered fermions. The fermion determinant removes the singularity and
reproduces the known chiral condensate and the meson mass within understandable
errors.Comment: Corrected a few typos and changed some references. Minor changes to
the conten
- …
