390 research outputs found
Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry
A new method to obtain trigonometry for the real spaces of constant curvature
and metric of any (even degenerate) signature is presented. The method
encapsulates trigonometry for all these spaces into a single basic
trigonometric group equation. This brings to its logical end the idea of an
absolute trigonometry, and provides equations which hold true for the nine
two-dimensional spaces of constant curvature and any signature. This family of
spaces includes both relativistic and non-relativistic homogeneous spacetimes;
therefore a complete discussion of trigonometry in the six de Sitter,
minkowskian, Newton--Hooke and galilean spacetimes follow as particular
instances of the general approach. Any equation previously known for the three
classical riemannian spaces also has a version for the remaining six
spacetimes; in most cases these equations are new. Distinctive traits of the
method are universality and self-duality: every equation is meaningful for the
nine spaces at once, and displays explicitly invariance under a duality
transformation relating the nine spaces. The derivation of the single basic
trigonometric equation at group level, its translation to a set of equations
(cosine, sine and dual cosine laws) and the natural apparition of angular and
lateral excesses, area and coarea are explicitly discussed in detail. The
exposition also aims to introduce the main ideas of this direct group
theoretical way to trigonometry, and may well provide a path to systematically
study trigonometry for any homogeneous symmetric space.Comment: 51 pages, LaTe
Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
The Quest for Uniformity in Mediation Confidentiality: Foolish Consistency or Crucial Predictability?
Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram
This review will be concerned with our knowledge of extended matter under the
governance of strong interaction, in short: QCD matter. Strictly speaking, the
hadrons are representing the first layer of extended QCD architecture. In fact
we encounter the characteristic phenomena of confinement as distances grow to
the scale of 1 fm (i.e. hadron size): loss of the chiral symmetry property of
the elementary QCD Lagrangian via non-perturbative generation of "massive"
quark and gluon condensates, that replace the bare QCD vacuum. However, given
such first experiences of transition from short range perturbative QCD
phenomena (jet physics etc.), toward extended, non perturbative QCD hadron
structure, we shall proceed here to systems with dimensions far exceeding the
force range: matter in the interior of heavy nuclei, or in neutron stars, and
primordial matter in the cosmological era from electro-weak decoupling (10^-12
s) to hadron formation (0.5 10^-5 s). This primordial matter, prior to
hadronization, should be deconfined in its QCD sector, forming a plasma (i.e.
color conducting) state of quarks and gluons: the Quark Gluon Plasma (QGP).Comment: 146 pages, 83 figure
The Case for Registering Patents and the Law and Economics of Present Patent-Obtaining Rules
Alternative Petlyuk Distillation Configurations for the Separation of Four-Component Mixtures
Non-unitary Evolution of Quantum Logics
In this work we present a dynamical approach to quantum logics. By changing the standard formalism of quantum mechanics to allow non-Hermitian operators as generators of time evolution, we address the question of how can logics evolve in time. In this way, we describe formally how a non-Boolean algebra may become a Boolean one under certain conditions. We present some simple models which illustrate this transition and develop a new quantum logical formalism based in complex spectral resolutions, a notion that we introduce in order to cope with the temporal aspect of the logical structure of quantum theory
- …
