37 research outputs found

    TLR-6 SNP P249S is associated with healthy aging in nonsmoking Eastern European Caucasians - A cohort study

    Get PDF
    Background To investigate mechanisms that determine healthy aging is of major interest in the modern world marked by longer life expectancies. In addition to lifestyle and environmental factors genetic factors also play an important role in aging phenotypes. The aged immune system is characterized by a chronic micro-inflammation, known as inflamm-aging, that is suspected to trigger the onset of age-related diseases such as cardiovascular disease, Alzheimer’s disease, cancer, and Diabetes Mellitus Type 2 (DMT2). We have recently shown that a Toll-like receptor 6 variant (P249S) is associated with susceptibility to cardiovascular disease and speculated that this variant may also be associated with healthy aging in general by decreasing the process of inflamm- aging. Results Analyzing the PolSenior cohort we show here that nonsmoking S allele carriers are significantly protected from age-related diseases (P = 0.008, OR: 0.654). This association depends not only on the association with cardiovascular diseases (P = 0.018, OR: 0.483) for homozygous S allele carriers, but is also driven by a protection from Diabetes Mellitus type 2 (P = 0.010, OR: 0.486) for S allele carriers. In addition we detect a trend but no significant association of this allele with inflamm-aging in terms of baseline IL-6 levels. Conclusion We confirm our previous finding of the TLR-6 249S variant to be protective regarding cardiovascular diseases. Furthermore, we present first evidence of TLR-6 249S being involved in DMT2 susceptibility and may be in general associated with healthy aging possibly by reducing the process of inflamm-aging

    Quantum dot loaded immunomicelles for tumor imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optical imaging is a promising method for the detection of tumors in animals, with speed and minimal invasiveness. We have previously developed a lipid coated quantum dot system that doubles the fluorescence of PEG-grafted quantum dots at half the dose. Here, we describe a tumor-targeted near infrared imaging agent composed of cancer-specific monoclonal anti-nucleosome antibody 2C5, coupled to quantum dot (QD)-containing polymeric micelles, prepared from a polyethylene glycol/phosphatidylethanolamine (PEG-PE) conjugate. Its production is simple and involves no special equipment. Its imaging potential is great since the fluorescence intensity in the tumor is twofold that of non-targeted QD-loaded PEG-PE micelles at one hour after injection.</p> <p>Methods</p> <p>Para-nitrophenol-containing (5%) PEG-PE quantum dot micelles were produced by the thin layer method. Following hydration, 2C5 antibody was attached to the PEG-PE micelles and the QD-micelles were purified using dialysis. 4T1 breast tumors were inoculated subcutaneously in the flank of the animals. A lung pseudometastatic B16F10 melanoma model was developed using tail vein injection. The contrast agents were injected via the tail vein and mice were depilated, anesthetized and imaged on a Kodak Image Station. Images were taken at one, two, and four hours and analyzed using a methodology that produces normalized signal-to-noise data. This allowed for the comparison between different subjects and time points. For the pseudometastatic model, lungs were removed and imaged <it>ex vivo </it>at one and twenty four hours.</p> <p>Results</p> <p>The contrast agent signal intensity at the tumor was double that of the passively targeted QD-micelles with equally fast and sharply contrasted images. With the side views of the animals only tumor is visible, while in the dorsal view internal organs including liver and kidney are visible. <it>Ex vivo </it>results demonstrated that the agent detects melanoma nodes in a lung pseudometastatic model after a 24 hours wash-out period, while at one hour, only a uniform signal is detected.</p> <p>Conclusions</p> <p>The targeted agent produces ultrabright tumor images and double the fluorescence intensity, as rapidly and at the same low dose as the passively targeted agents. It represents a development that may potentially serve to enhance early detection for metastases.</p

    Carcinogenic effects of exogenous and endogenous glucagon-like peptide-2 in azoxymethane-treated mice.

    No full text
    Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent intestinotropic hormone that promotes intestinal growth, via increased intestinal proliferation and decreased apoptosis, as well as increases in nutrient absorption and barrier function. The long-acting analog h(Gly(2))GLP-2[1-33] is currently being tested for treatment of short bowel syndrome and Crohn's disease. However, the role of GLP-2 in colon carcinogenesis is controversial. To assess the intestinotropic effects of exogenous and endogenous GLP-2, C57BL6/J mice were injected with 1 microg h(Gly(2))GLP-2[1-33]; 30 or 60 ng hGLP-2[3-33], a GLP-2 receptor antagonist; or PBS (4 wk, twice a day, sc). Chronic h(Gly(2))GLP-2[1-33] increased small intestinal weight/body weight (P < 0.001), villus height (P < 0.001), crypt depth (P < 0.001), and crypt cell proliferation, as measured by expression of the proliferative marker Ki67 (P < 0.05-0.01). In contrast, chronic hGLP-2[3-33] decreased small intestinal weight/body weight (P < 0.05) and colon weight/body weight (P < 0.05). To assess the carcinogenic effects of endogenous and exogenous GLP-2, separate mice were injected with azoxymethane (10 mg/kg, 4 wk, every 7 d, ip), followed by 1.5 microg h(Gly(2))GLP-2[1-33], 30 ng hGLP-2[3-33], or PBS (4 wk, twice a day, sc) 2 or 12 wk thereafter. At 10 or 46 wk after azoxymethane treatment, the numbers of aberrant crypt foci increased with h(Gly(2))GLP-2[1-33] (P < 0.001) and decreased with hGLP-2[3-33] (P < 0.01-0.05) treatment. Furthermore, mucin-depleted aberrant foci, consistent with progressive dysplasia, were almost exclusively present in h(Gly(2))GLP-2[1-33]-treated mice (P < 0.01-0.001). Additionally, adenocarcinomas developed in h(Gly(2))GLP-2[1-33]-treated mice but not in those receiving hGLP-2[3-33] or PBS. Taken together, these studies indicate that chronic treatment with GLP-2 enhances colon carcinogenesis, whereas antagonism of the GLP-2 receptor decreases dysplasia, with possible implications for human therapy

    Essential role for protein kinase C? in oleic acid-induced glucagon-like peptide-1 secretion in vivo in the rat.

    No full text
    Luminal monounsaturated long-chain fatty acids [e.g. oleic acid (OA)] increase secretion of the incretin, glucagon-like peptide-1 (GLP-1) from the ileocolonic L cell. However, it is not known whether OA ingestion causes a sufficient increase in distal luminal concentrations to directly enhance GLP-1 secretion. Furthermore, we have demonstrated that protein kinase C? (PKC?) is required for OA-induced GLP-1 secretion in vitro; however, the physiological relevance of this finding remains unknown. Therefore, we have determined luminal OA concentrations in OA-fed rats and examined the effects of direct OA stimulation on GLP-1 secretion using a novel model of intestinal-specific PKC? knockdown. Murine GLUTag L cells express numerous fatty acid transport proteins and take up OA in a saturable manner. Oral administration of OA increased the ileal chyme content of OA by 140-fold over 60-120 min (P < 0.05-0.01), peaking at 105 ± 50 ?mol/g. To evaluate the direct effects of OA on GLP-1 secretion, 125 mm OA was rectally infused into the colon and terminal ileum of rats. Plasma bioactive GLP-1 increased from 20 ± 6 to 102 ± 21 pg/ml at 60 min (P < 0.01). However, pretreatment with ileocolonic adenoviral PKC? small interfering RNA resulted in a 68 ± 8% reduction in the GLP-1 response to rectal OA (P < 0.001). The results of these studies indicate that OA levels in the rat terminal gut after oral ingestion are sufficient to induce GLP-1 secretion and that PKC? is necessary for the effects of OA on GLP-1 secretion in vivo. PKC? may therefore serve as a novel therapeutic target to enhance GLP-1 levels in patients with type 2 diabetes

    Metformin improves intestinal L cell survival in vitro and in vivo

    Full text link

    GPR119: “Double-Dipping” for Better Glycemic Control

    Full text link
    corecore