2,567 research outputs found

    The traveling-wave V-antenna

    Get PDF
    Combination resonant V-antenna and traveling-wave dipole antenn

    Gas bulk motion in the Perseus cluster measured with SUZAKU

    Full text link
    We present the results from Suzaku observations of the Perseus galaxy cluster, which is relatively close, the brightest in the X-ray sky and a relaxed object with a cool core. A number of exposures of central regions and offset pointing with the X-ray Imaging Spectrometer cover a region within radii of 20'-30'. The central data are used to evaluate the instrumental energy-scale calibration with accuracy confirmed to within around 300 km/s, by the spatial and temporal variation of the instruments. These deep and well-calibrated data are used to measure X-ray redshifts of the intracluster medium. A hint of gas bulk motion, with radial velocity of about -(150-300) km/s, relative to the main system was found at 2-4 arcmin (45-90kpc) west of the cluster center, where an X-ray excess and a cold front were found previously. No other velocity structure was discovered. Over spatial scales of 50-100kpc and within 200kpc radii of the center, the gas-radial-velocity variation is below 300 km/s, while over scales of 400 kpc within 600 kpc radii, the variation is below 600 km/s. These X-ray redshift distributions are compared spatially with those of optical member galaxies for the first time in galaxy clusters. Based on X-ray line widths gas turbulent velocities within these regions are also constrained within 1000-3000 km/s. These results of gas dynamics in the core and larger scales in association with cluster merger activities are discussed and future potential of high-energy resolution spectroscopy with ASTRO-H is considered.Comment: Accepted to Ap

    Glueball enhancements in p(gamma,VV)p through vector meson dominance

    Full text link
    Double vector meson photoproduction, p(gamma, G -> VV)p, mediated by a scalar glueball G is investigated. Using vector meson dominance (VMD) and Regge/pomeron phenomenology, a measureable glueball enhancement is predicted in the invariant VV = rho rho and omega omega mass spectra. The scalar glueball is assumed to be the lightest physical state on the daughter pomeron trajectory governing diffractive vector meson photoproduction. In addition to cross sections, calculations for hadronic and electromagnetic glueball decays, G -> V V' (V,V'= rho, omega, phi, gamma), and gamma_v V -> G transition form factors are presented based upon flavor universality, VMD and phenomenological couplings from phi photoproduction analyses. The predicted glueball decay widths are similar to an independent theoretical study. A novel signature for glueball detection is also discussed

    Unsupervised Diverse Colorization via Generative Adversarial Networks

    Full text link
    Colorization of grayscale images has been a hot topic in computer vision. Previous research mainly focuses on producing a colored image to match the original one. However, since many colors share the same gray value, an input grayscale image could be diversely colored while maintaining its reality. In this paper, we design a novel solution for unsupervised diverse colorization. Specifically, we leverage conditional generative adversarial networks to model the distribution of real-world item colors, in which we develop a fully convolutional generator with multi-layer noise to enhance diversity, with multi-layer condition concatenation to maintain reality, and with stride 1 to keep spatial information. With such a novel network architecture, the model yields highly competitive performance on the open LSUN bedroom dataset. The Turing test of 80 humans further indicates our generated color schemes are highly convincible

    Fast Scramblers Of Small Size

    Full text link
    We investigate various geometrical aspects of the notion of `optical depth' in the thermal atmosphere of black hole horizons. Optical depth has been proposed as a measure of fast-crambling times in such black hole systems, and the associated optical metric suggests that classical chaos plays a leading role in the actual scrambling mechanism. We study the behavior of the optical depth with the size of the system and find that AdS/CFT phase transitions with topology change occur naturally as the scrambler becomes smaller than its thermal length. In the context of detailed AdS/CFT models based on D-branes, T-duality implies that small scramblers are described in terms of matrix quantum mechanics.Comment: 14 pages, 3 figures. Added reference

    A Liapunov functional for a matrix neutral difference-differential equation with one delay

    Get PDF
    AbstractFor the matrix neutral difference-differential equation ẋ(t) + Aẋ(t − τ)  Bx(t) + Cx(t − τ) we construct a quadratic Liapunov functional which gives necessary and sufficient conditions for the asymptotic stability of the solutions of that equation. We consider a difference equation approximation of the difference-differential equation, and for this difference equation we construct a Liapunov function from which we obtain the desired Liapunov functional by an appropriate limiting process. The Liapunov functional thus obtained gives the best possible estimate for the rates of growth or decay of the solutions of the matrix neutral difference-differential equation. The results obtained are natural generalizations of previous results obtained for a matrix retarded difference-differential equation with one delay

    Chiral Lagrangian Parameters for Scalar and Pseudoscalar Mesons

    Full text link
    The results of a high-statistics study of scalar and pseudoscalar meson propagators in quenched lattice QCD are presented. For two values of lattice spacing, β=5.7\beta=5.7 (a.18a \approx .18 fm) and 5.9 (a.12a \approx .12 fm), we probe the light quark mass region using clover improved Wilson fermions with the MQA pole-shifting ansatz to treat the exceptional configuration problem. The quenched chiral loop parameters m0m_0 and αΦ\alpha_{\Phi} are determined from a study of the pseudoscalar hairpin correlator. From a global fit to the meson correlators, estimates are obtained for the relevant chiral Lagrangian parameters, including the Leutwyler parameters L5L_5 and L8L_8. Using the parameters obtained from the singlet and nonsinglet pseudoscalar correlators, the quenched chiral loop effect in the nonsinglet scalar meson correlator is studied. By removing this QCL effect from the lattice correlator, we obtain the mass and decay constant of the ground state scalar, isovector meson a0a_0.Comment: 36 pages, 12 figures, LaTe

    Consistent analysis of the reaction γppη\gamma p \to p \eta^\prime and ppppηpp \to pp\eta^\prime

    Full text link
    The production of η\eta' mesons in the reactions γppη\gamma p\to p\eta' and ppppηpp\to pp\eta' is described consistently within a relativistic meson exchange model of hadronic interactions. The photoproduction can be described quite well over the entire energy range of available data by considering an S11S_{11} and a P11P_{11} resonance, in addition to the tt-channel mesonic current. The observed angular distribution is due to the interference between the tt-channel and the nucleon resonance ss- and uu-channel contributions. Our analysis yields positions close to 1650 MeV and 1870 MeV for the S11S_{11} and P11P_{11} resonances, respectively. We argue that, at present, identifying these states with the known S11(1650)S_{11}(1650) resonance and the missing P11P_{11} resonance predicted at 1880 MeV, respectively, would be premature. It is found that the nucleonic current is relatively small and that the NNηNN\eta^\prime coupling constant cannot be much larger than gNNη=3g_{NN\eta^\prime}=3. As for the ppppηp p \to p p \eta^\prime reaction, different current contributions are constrained by a combined analysis of this and the photoproduction reaction. Difficulties to simultaneously account for the 47-MeV and 144-MeV angular distributions measured by the COSY-11 and DISTO collaborations, respectively, are addressed.Comment: minor revision, scheduled to a appear in Phys. Rev. C 69 (May 2004), revtex, 17 pages, 10 figures, 3 table

    Isoscalar-isovector mass splittings in excited mesons

    Full text link
    Mass splittings between the isovector and isoscalar members of meson nonets arise in part from hadronic loop diagrams which violate the Okubo-Zweig-Iizuka rule. Using a model for these loop processes which works qualitatively well in the established nonets, I tabulate predictions for the splittings and associated isoscalar mixing angles in the remaining nonets below about 2.5 GeV, and explain some of their systematic features. The results for excited vector mesons compare favorably with experiment.Comment: 8 RevTeX pages, including 1 LaTeX figure. CMU-HEP93-23/DOE-ER-40682-4
    corecore