2,941 research outputs found
Mobile Computing in Physics Analysis - An Indicator for eScience
This paper presents the design and implementation of a Grid-enabled physics
analysis environment for handheld and other resource-limited computing devices
as one example of the use of mobile devices in eScience. Handheld devices offer
great potential because they provide ubiquitous access to data and
round-the-clock connectivity over wireless links. Our solution aims to provide
users of handheld devices the capability to launch heavy computational tasks on
computational and data Grids, monitor the jobs status during execution, and
retrieve results after job completion. Users carry their jobs on their handheld
devices in the form of executables (and associated libraries). Users can
transparently view the status of their jobs and get back their outputs without
having to know where they are being executed. In this way, our system is able
to act as a high-throughput computing environment where devices ranging from
powerful desktop machines to small handhelds can employ the power of the Grid.
The results shown in this paper are readily applicable to the wider eScience
community.Comment: 8 pages, 7 figures. Presented at the 3rd Int Conf on Mobile Computing
& Ubiquitous Networking (ICMU06. London October 200
Aspergillosis of the Sphenoid Sinus with the Involvement of the Clivus
Introduction: Fungal infections of the nose and paranasal sinuses are frequent in this part of the world. One aspect of the increased frequency is the improved clinical, radiological and pathological diagnostic methods that are now available. Aspergillus is the commonest infecting fungus of the nose and the paranasal sinus1 . It is mainly a saprophytic spore producing fungus and can cause invasive and non-invasive infections. The initial report of fungal paranasal infection largely dealt with immunocompromised individuals as distinct from the allergic fungal infection. Aspergillosis confined to the sphenoid sinus is uncommon with only 34 cases having been reported in the literature2,3. These were mostly seen in immunosuppressed patients. Isolated sphenoid sinusitis is uncommon and that due to fungal infection is rare4 . We report the case of aspergillosis of the sphenoid siiius where disease had extended into the upper part of the clivus bone
Sub-Riemannian Fast Marching in SE(2)
We propose a Fast Marching based implementation for computing sub-Riemanninan
(SR) geodesics in the roto-translation group SE(2), with a metric depending on
a cost induced by the image data. The key ingredient is a Riemannian
approximation of the SR-metric. Then, a state of the art Fast Marching solver
that is able to deal with extreme anisotropies is used to compute a SR-distance
map as the solution of a corresponding eikonal equation. Subsequent
backtracking on the distance map gives the geodesics. To validate the method,
we consider the uniform cost case in which exact formulas for SR-geodesics are
known and we show remarkable accuracy of the numerically computed SR-spheres.
We also show a dramatic decrease in computational time with respect to a
previous PDE-based iterative approach. Regarding image analysis applications,
we show the potential of considering these data adaptive geodesics for a fully
automated retinal vessel tree segmentation.Comment: CIARP 201
Blood pressure, atherosclerosis, and the incidence of age-related maculopathy: the Rotterdam Study
PURPOSE: To determine whether blood pressure and subclinical
atherosclerosis are associated with incident age-related maculopathy
(ARM). METHODS: The study was performed within the Rotterdam Study, a
population-based, prospective cohort study in Rotterdam, The Netherlands.
A total of 4822 subjects who at baseline were aged 55 years more, were
free of ARM, and participated in at least one of two follow-up
examinations after a mean of 2 and 6.5 years, were included in the study.
At baseline, blood pressure and the presence of atherosclerosis were
determined. ARM was assessed according to the International Classification
and Grading System and defined as large, soft drusen with pigmentary
changes; indistinct drusen; or atrophic or neovascular age-related macular
degeneration. RESULTS: After a mean follow-up of 5.2 years, incident ARM
was diagnosed in 417 subjects. Increased systolic blood pressure or pulse
pressure was associated with a higher risk of ARM. Adjusted for age,
gender, smoking, total and high-density lipoprotein cholesterol, body mass
index, and diabetes mellitus, odds ratios (OR) per 10-mm Hg increase were
1.08 (95% confidence interval [CI]: 1.03-1.14) and 1.11 (95% CI:
1.04-1.18), respectively. Moreover, different measures of atherosclerosis
were associated with the risk of ARM. An increase in carotid wall
thickness (OR per 1 SD, 1.15; 95% CI: 1.03-1.28) increased the risk of
ARM. The lowest compared with the highest tertile of ankle-arm index had
an OR of 1.32 (95% CI: 1.00-1.75). A weak association was found between
aortic calcifications and the risk of ARM. CONCLUSIONS: Elevated systolic
blood or pulse pressure or the presence of atherosclerosis may increase
the risk of development of ARM
Drug-gene interactions of antihypertensive medications and risk of incident cardiovascular disease: a pharmacogenomics study from the CHARGE consortium
Background
Hypertension is a major risk factor for a spectrum of cardiovascular diseases (CVD), including myocardial infarction, sudden death, and stroke. In the US, over 65 million people have high blood pressure and a large proportion of these individuals are prescribed antihypertensive medications. Although large long-term clinical trials conducted in the last several decades have identified a number of effective antihypertensive treatments that reduce the risk of future clinical complications, responses to therapy and protection from cardiovascular events vary among individuals.
Methods
Using a genome-wide association study among 21,267 participants with pharmaceutically treated hypertension, we explored the hypothesis that genetic variants might influence or modify the effectiveness of common antihypertensive therapies on the risk of major cardiovascular outcomes. The classes of drug treatments included angiotensin-converting enzyme inhibitors, beta-blockers, calcium channel blockers, and diuretics. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, each study performed array-based genome-wide genotyping, imputed to HapMap Phase II reference panels, and used additive genetic models in proportional hazards or logistic regression models to evaluate drug-gene interactions for each of four therapeutic drug classes. We used meta-analysis to combine study-specific interaction estimates for approximately 2 million single nucleotide polymorphisms (SNPs) in a discovery analysis among 15,375 European Ancestry participants (3,527 CVD cases) with targeted follow-up in a case-only study of 1,751 European Ancestry GenHAT participants as well as among 4,141 African-Americans (1,267 CVD cases).
Results
Although drug-SNP interactions were biologically plausible, exposures and outcomes were well measured, and power was sufficient to detect modest interactions, we did not identify any statistically significant interactions from the four antihypertensive therapy meta-analyses (Pinteraction > 5.0×10−8). Similarly, findings were null for meta-analyses restricted to 66 SNPs with significant main effects on coronary artery disease or blood pressure from large published genome-wide association studies (Pinteraction ≥ 0.01). Our results suggest that there are no major pharmacogenetic influences of common SNPs on the relationship between blood pressure medications and the risk of incident CVD
Associations of NINJ2 sequence variants with incident ischemic stroke in the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium
Background<p></p>
Stroke, the leading neurologic cause of death and disability, has a substantial genetic component. We previously conducted a genome-wide association study (GWAS) in four prospective studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and demonstrated that sequence variants near the NINJ2 gene are associated with incident ischemic stroke. Here, we sought to fine-map functional variants in the region and evaluate the contribution of rare variants to ischemic stroke risk.<p></p>
Methods and Results<p></p>
We sequenced 196 kb around NINJ2 on chromosome 12p13 among 3,986 European ancestry participants, including 475 ischemic stroke cases, from the Atherosclerosis Risk in Communities Study, Cardiovascular Health Study, and Framingham Heart Study. Meta-analyses of single-variant tests for 425 common variants (minor allele frequency [MAF] ≥ 1%) confirmed the original GWAS results and identified an independent intronic variant, rs34166160 (MAF = 0.012), most significantly associated with incident ischemic stroke (HR = 1.80, p = 0.0003). Aggregating 278 putatively-functional variants with MAF≤ 1% using count statistics, we observed a nominally statistically significant association, with the burden of rare NINJ2 variants contributing to decreased ischemic stroke incidence (HR = 0.81; p = 0.026).<p></p>
Conclusion<p></p>
Common and rare variants in the NINJ2 region were nominally associated with incident ischemic stroke among a subset of CHARGE participants. Allelic heterogeneity at this locus, caused by multiple rare, low frequency, and common variants with disparate effects on risk, may explain the difficulties in replicating the original GWAS results. Additional studies that take into account the complex allelic architecture at this locus are needed to confirm these findings
Common variants at 6p21.1 are associated with large artery atherosclerotic stroke
Genome-wide association studies (GWAS) have not consistently detected replicable genetic risk factors for ischemic stroke, potentially due to etiological heterogeneity of this trait. We performed GWAS of ischemic stroke and a major ischemic stroke subtype (large artery atherosclerosis, LAA) using 1,162 ischemic stroke cases (including 421 LAA cases) and 1,244 population controls from Australia. Evidence for a genetic influence on ischemic stroke risk was detected, but this influence was higher and more significant for the LAA subtype. We identified a new LAA susceptibility locus on chromosome 6p21.1 (rs556621: odds ratio (OR)=1.62, P=3.9×10(-8)) and replicated this association in 1,715 LAA cases and 52,695 population controls from 10 independent population cohorts (meta-analysis replication OR=1.15, P=3.9×10(-4); discovery and replication combined OR=1.21, P=4.7×10(-8)). This study identifies a genetic risk locus for LAA and shows how analyzing etiological subtypes may better identify genetic risk alleles for ischemic strok
Genetic determinants of cortical structure (thickness, surface area and volumes) among disease free adults in the CHARGE Consortium
Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging
Recommended from our members
Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.
Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels
- …
