1,448 research outputs found

    Formation of Deeply Bound Kaonic Atoms in (K^-,N) Reactions

    Full text link
    We study theoretically the (K^-,N) reactions for the formation of the deeply bound kaonic atoms, which were predicted to be quasi--stable with narrow widths, using the Green function method. We consider various cases with different target nuclei and energies systematically and find the clear signals in the theoretical spectra for all cases considered in this article. The signals show very interesting structures, such as the RESONANCEDIPRESONANCE DIP instead of the resonance peak. We discuss the origins of the interesting structures and possibilities to get new information on the existence of the kaonic nuclei from the spectra of the atomic state formations.Comment: 11 pages, 9 figure

    Fabrication of micro-structures for optically driven micromachines using two-photon photopolymerization of UV curing resins

    Full text link
    Two-photon photopolymerization of UV curing resins is an attractive method for the fabrication of microscopic transparent objects with size in the tens of micrometers range. We have been using this method to produce three-dimensional structures for optical micromanipulation, in an optical system based on a femtosecond laser. By carefully adjusting the laser power and the exposure time we were able to create micro-objects with well-defined 3D features and with resolution below the diffraction limit of light. We discuss the performance and capabilities of a microfabrication system, with some examples of its products.Comment: 12 pages, 10 figure

    Magnetostriction of a Superconductor: -Results from the Critical-State Model

    Full text link
    In many cases, the critical-state theory can be treated as a suffi ciently accurate approximation for the modelling of the magnetic properties of superconductors. In the present work, the magnetostrictive hysteresis is computed for a quite general case of the modified Kim-Anderson model. The results obtained reproduce many features of the giant magnetostriction (butterfly-shaped curves) reported in the literature for measurements made on single-crystal samples of the high-temperature superconductor Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8. It is shown that addition of a contribution to the magnetostriction in the superconducting state which is of similar origin as in the normal state, offers a broader phenomenological interpretation of the complex magnetostriction hysteresis found in such heavy-fermion compounds as UPt3UPt_3, URu2Si2URu_2Si_2 or UBe13UBe_{13}.Comment: 9 LaTeX pages, 4 Postscript figures, WWW version available at http://is.dal.ca/~zkoziol/super.htm

    Detection of the linear radical HC4N in IRC+10216

    Get PDF
    We report the detection of the linear radical HC4N in the C-rich envelope of IRC+10216. After HCCN, HC4N is the second member of the allenic chain family HC_(2n)N observed in space. The column density of HC4N is found to be 1.5 10**12 cm**(-2). The abundance ratio HC2N/HC4N is 9, a factor of two larger than the decrement observed for the cyanopolyynes HC$_(2n+1)N/HC_(2n+3)N. Linear HC_4N has a 3-Sigma electronic ground state and is one of the 3 low-energy isomeric forms of this molecule. We have searched for the bent and ringed HC4N isomers, but could only derive an upper limit to their column densities of about 3 10**(12) cm**(-2).Comment: Preprint of 10 page

    Anomalous time delays and quantum weak measurements in optical micro-resonators

    Full text link
    We study inelastic resonant scattering of a Gaussian wave packet with the parameters close to a zero of the complex scattering coefficient. We demonstrate, both theoretically and experimentally, that such near-zero scattering can result in anomalously-large time delays and frequency shifts of the scattered wave packet. Furthermore, we reveal a close analogy of these anomalous shifts with the spatial and angular Goos-H\"anchen optical beam shifts, which are amplified via quantum weak measurements. However, in contrast to other beam-shift and weak-measurement systems, we deal with a one-dimensional scalar wave without any intrinsic degrees of freedom. It is the non-Hermitian nature of the system that produces its rich and non-trivial behaviour. Our results are generic for any scattering problem, either quantum or classical. As an example, we consider the transmission of an optical pulse through a nano-fiber with a side-coupled toroidal micro-resonator. The zero of the transmission coefficient corresponds to the critical coupling conditions. Experimental measurements of the time delays near the critical-coupling parameters verify our weak-measurement theory and demonstrate amplification of the time delay from the typical inverse resonator linewidth scale to the pulse duration scale.Comment: 14 pages, 5 figure
    corecore