1,448 research outputs found
Formation of Deeply Bound Kaonic Atoms in (K^-,N) Reactions
We study theoretically the (K^-,N) reactions for the formation of the deeply
bound kaonic atoms, which were predicted to be quasi--stable with narrow
widths, using the Green function method. We consider various cases with
different target nuclei and energies systematically and find the clear signals
in the theoretical spectra for all cases considered in this article. The
signals show very interesting structures, such as the instead
of the resonance peak. We discuss the origins of the interesting structures and
possibilities to get new information on the existence of the kaonic nuclei from
the spectra of the atomic state formations.Comment: 11 pages, 9 figure
Fabrication of micro-structures for optically driven micromachines using two-photon photopolymerization of UV curing resins
Two-photon photopolymerization of UV curing resins is an attractive method
for the fabrication of microscopic transparent objects with size in the tens of
micrometers range. We have been using this method to produce three-dimensional
structures for optical micromanipulation, in an optical system based on a
femtosecond laser. By carefully adjusting the laser power and the exposure time
we were able to create micro-objects with well-defined 3D features and with
resolution below the diffraction limit of light. We discuss the performance and
capabilities of a microfabrication system, with some examples of its products.Comment: 12 pages, 10 figure
Magnetostriction of a Superconductor: -Results from the Critical-State Model
In many cases, the critical-state theory can be treated as a suffi ciently
accurate approximation for the modelling of the magnetic properties of
superconductors. In the present work, the magnetostrictive hysteresis is
computed for a quite general case of the modified Kim-Anderson model. The
results obtained reproduce many features of the giant magnetostriction
(butterfly-shaped curves) reported in the literature for measurements made on
single-crystal samples of the high-temperature superconductor
. It is shown that addition of a contribution to the
magnetostriction in the superconducting state which is of similar origin as in
the normal state, offers a broader phenomenological interpretation of the
complex magnetostriction hysteresis found in such heavy-fermion compounds as
, or .Comment: 9 LaTeX pages, 4 Postscript figures, WWW version available at
http://is.dal.ca/~zkoziol/super.htm
Detection of the linear radical HC4N in IRC+10216
We report the detection of the linear radical HC4N in the C-rich envelope of
IRC+10216. After HCCN, HC4N is the second member of the allenic chain family
HC_(2n)N observed in space. The column density of HC4N is found to be 1.5
10**12 cm**(-2). The abundance ratio HC2N/HC4N is 9, a factor of two larger
than the decrement observed for the cyanopolyynes HC$_(2n+1)N/HC_(2n+3)N.
Linear HC_4N has a 3-Sigma electronic ground state and is one of the 3
low-energy isomeric forms of this molecule. We have searched for the bent and
ringed HC4N isomers, but could only derive an upper limit to their column
densities of about 3 10**(12) cm**(-2).Comment: Preprint of 10 page
Temperature and Field Dependence of the Normal Zone Propagation Velocity of the LHD Helical Coil
Anomalous time delays and quantum weak measurements in optical micro-resonators
We study inelastic resonant scattering of a Gaussian wave packet with the
parameters close to a zero of the complex scattering coefficient. We
demonstrate, both theoretically and experimentally, that such near-zero
scattering can result in anomalously-large time delays and frequency shifts of
the scattered wave packet. Furthermore, we reveal a close analogy of these
anomalous shifts with the spatial and angular Goos-H\"anchen optical beam
shifts, which are amplified via quantum weak measurements. However, in contrast
to other beam-shift and weak-measurement systems, we deal with a
one-dimensional scalar wave without any intrinsic degrees of freedom. It is the
non-Hermitian nature of the system that produces its rich and non-trivial
behaviour. Our results are generic for any scattering problem, either quantum
or classical. As an example, we consider the transmission of an optical pulse
through a nano-fiber with a side-coupled toroidal micro-resonator. The zero of
the transmission coefficient corresponds to the critical coupling conditions.
Experimental measurements of the time delays near the critical-coupling
parameters verify our weak-measurement theory and demonstrate amplification of
the time delay from the typical inverse resonator linewidth scale to the pulse
duration scale.Comment: 14 pages, 5 figure
- …
