143 research outputs found
Bounds for Lepton Flavor Violation and the Pseudoscalar Higgs in the General Two Higgs Doublet Model using muon factor
Current experimental data from the muon factor, seems to show the
necessity of physics beyond the Standard Model (SM), since the difference
between SM and experimental predictions is 2.6. In the framework of
the General Two Higgs Doublet Model (2HDM), we calculate the muon anomalous
magnetic moment to get lower and upper bounds for the Flavour Changing (FC)
Yukawa couplings in the leptonic sector. We also obtain lower bounds for the
mass of the pseudoscalar Higgs () as a function of the parameters of
the model.Comment: 12 pages, RevTex4, 5 figures. Improved presentation, updated
experimental data, amplified analysis, new figures added. Subbmited to Phys.
Rev.
Lepton Flavor Violation in the Two Higgs Doublet Model type III
We consider the Two Higgs Doublet Model (2HDM) of type III which leads to
Flavour Changing Neutral Currents (FCNC) at tree level in the leptonic sector.
In the framework of this model we can have, in principle, two situations: the
case (a) when both doublets acquire a vacuum expectation value different from
zero and the case (b) when only one of them is not zero. In addition, we show
that we can make two types of rotations for the flavor mixing matrices which
generates four types of lagrangians, with the rotation of type I we recover the
case (b) from the case (a) in the limit , and with the
rotation of type II we obtain the case (b) from (a) in the limit Moreover, two of the four possible lagrangians correspond to the models
of types I and II plus Flavor Changing (FC) interactions. The analitical
expressions of the partial lepton number violating widths and are derived for the cases (a) and (b) and both
types of rotations.In all cases these widths go asymptotically to zero in
the decoupling limit for all Higgses. We present from our analysis upper bounds
for the flavour changing transition and we show that such bounds
are sensitive to the VEV structure and the type of rotation utilized.Comment: 7 pages RevTeX4, 4 figures postscript, new section added and some new
reference
A reversible phospho-switch mediated by ULK1 regulates the activity of autophagy protease ATG4B
Upon induction of autophagy, the ubiquitin-like protein LC3 is conjugated to phosphatidylethanolamine (PE) on the inner and outer membrane of autophagosomes to allow cargo selection and autophagosome formation. LC3 undergoes two processing steps, the proteolytic cleavage of pro-LC3 and the de-lipidation of LC3-PE from autophagosomes, both executed by the same cysteine protease ATG4. How ATG4 activity is regulated to co-ordinate these events is currently unknown. Here we find that ULK1, a protein kinase activated at the autophagosome formation site, phosphorylates human ATG4B on serine 316. Phosphorylation at this residue results in inhibition of its catalytic activity in vitro and in vivo. On the other hand, phosphatase PP2A-PP2R3B can remove this inhibitory phosphorylation. We propose that the opposing activities of ULK1-mediated phosphorylation and PP2A-mediated dephosphorylation provide a phospho-switch that regulates the cellular activity of ATG4B to control LC3 processing
A phase I, randomized study of combined IL-2 and therapeutic immunisation with antiretroviral therapy
BACKGROUND: Fully functional HIV-1-specific CD8 and CD4 effector T-cell responses are vital to the containment of viral activity and disease progression. These responses are lacking in HIV-1-infected patients with progressive disease. We attempted to augment fully functional HIV-1-specific CD8 and CD4 effector T-cell responses in patients with advanced chronic HIV-1 infection. DESIGN: Chronically infected patients with low CD4 counts T-cell counts who commenced antiretroviral therapy (ART) were subsequently treated with combined interleukin-2 and therapeutic vaccination. METHODS: Thirty six anti-retroviral naive patients were recruited and initiated on combination ART for 17 weeks before randomization to: A) ongoing ART alone; B) ART with IL-2 twice daily for 5 days every four weeks starting at week 17 for 3 cycles; C) ART with IL-2 as in group B and Remune HIV-1 vaccine administered once every 3 months, starting at week 17; and D) ART with Remune vaccine as in group C. Patients were studied for 65 weeks following commencement of ART, with an additional prior 6 week lead-in observation period. CD4 and CD8 T-cell counts, evaluations of HIV-1 RNA levels and proliferative responses to recall and HIV-1 antigens were complemented with assessment of IL-4-secretion alongside quantification of anti-HIV-1 CD8 T-cell responses and neutralizing antibody titres. RESULTS: Neither IL-2 nor Remune™ vaccination induced sustained HIV-1-specific T-cell responses. However, we report an inverse relationship between HIV-1-specific proliferative responses and IL-4 production which continuously increased in patients receiving immunotherapy, but not patients receiving ART alone. CONCLUSION: Induction of HIV-1-specific cell-mediated responses is a major challenge in chronically HIV-1-infected patients even when combining immunisation with IL-2 therapy. An antigen-specific IL-4-associated suppressive response may play a role in attenuating HIV-specific responses
Transient Nature of Long-Term Nonprogression and Broad Virus-Specific Proliferative T-Cell Responses with Sustained Thymic Output in HIV-1 Controllers
HIV-1(+) individuals who, without therapy, conserve cellular anti-HIV-1 responses, present with high, stable CD4(+) T-cell numbers, and control viral replication, facilitate analysis of atypical viro-immunopathology. In the absence of universal definition, immune function in such HIV controllers remains an indication of non-progression.CD4 T-cell responses to a number of HIV-1 proteins and peptide pools were assessed by IFN-gamma ELISpot and lymphoproliferative assays in HIV controllers and chronic progressors. Thymic output was assessed by sjTRECs levels. Follow-up of 41 HIV-1(+) individuals originally identified as "Long-term non-progressors" in 1996 according to clinical criteria, and longitudinal analysis of two HIV controllers over 22 years, was also performed. HIV controllers exhibited substantial IFN-gamma producing and proliferative HIV-1-specific CD4 T-cell responses to both recombinant proteins and peptide pools of Tat, Rev, Nef, Gag and Env, demonstrating functional processing and presentation. Conversely, HIV-specific T-cell responses were limited to IFN-gamma production in chronic progressors. Additionally, thymic output was approximately 19 fold higher in HIV controllers than in age-matched chronic progressors. Follow-up of 41 HIV-1(+) patients identified as LTNP in 1996 revealed the transitory characteristics of this status. IFN-gamma production and proliferative T-cell function also declines in 2 HIV controllers over 22 years.Although increased thymic output and anti-HIV-1 T-cell responses are observed in HIV controllers compared to chronic progressors, the nature of nonprogressor/controller status appears to be transitory
Gender-based acute outcome in percutaneous coronary intervention of chronic total coronary occlusion
PI3 kinase and FOXO1 transcription factor activity differentially control B cells in the germinal center light and dark zones
Phosphatidylinositol 3' OH kinase (PI3K) signaling and FOXO transcription factors play opposing roles at several B cell developmental stages. We show here abundant nuclear FOXO1 expression in the proliferative compartment of the germinal center (GC), its dark zone (DZ), and PI3K activity, downregulating FOXO1, in the light zone (LZ), where cells are selected for further differentiation. In the LZ, however, FOXO1 was expressed in a fraction of cells destined for DZ reentry. Upon FOXO1 ablation or induction of PI3K activity, GCs lost their DZ, owing at least partly to downregulation of the chemokine receptor CXCR4. Although this prevented proper cyclic selection of cells in GCs, somatic hypermutation and proliferation were maintained. Class switch recombination was partly lost due to a failure of switch region targeting by activation-induced deaminase (AID)
Timed global reorganization of protein synthesis during neocortex neurogenesis at codon resolution
Translation modulates the timing and amplification of gene expression after transcription. Development of the brain’s neocortex requires precisely timed and spatially targeted gene expression, but the relationship between mRNA vs. protein synthesis throughout the genome is unknown. We perform a comprehensive analysis of the reactants, synthesis, and products of mRNA translation spanning mouse neocortex neurogenesis. Ribosome number in the cortical plate decreases sharply at mid-neurogenesis during a transition in neuronal subtype specification, shifting the fundamental kinetics of protein synthesis, with mRNA and protein levels frequently divergent. Satb2, which drives an essential neuronal subtype-specific program, is a highly dynamically translated mRNA with surprisingly broad transcription across diverse neuronal lineages. Satb2 protein achieves its neuronal subtype expression through timed regulation by the RNA-binding protein Pumilio2. Thus, the refinement of transcriptional programs by protein synthesis is a widespread feature of neuronal specification. Developmental neocortex translatome data are provided in an open-source resource: https://shiny.mdc-berlin.de/cortexomics/
A critical period of translational control during brain development at codon resolution
Translation modulates the timing and amplification of gene expression after transcription. Brain development requires uniquely complex gene expression patterns, but large-scale measurements of translation directly in the prenatal brain are lacking. We measure the reactants, synthesis and products of mRNA translation spanning mouse neocortex neurogenesis, and discover a transient window of dynamic regulation at mid-gestation. Timed translation upregulation of chromatin-binding proteins like Satb2, which is essential for neuronal subtype differentiation, restricts protein expression in neuronal lineages despite broad transcriptional priming in progenitors. In contrast, translation downregulation of ribosomal proteins sharply decreases ribosome biogenesis, coinciding with a major shift in protein synthesis dynamics at mid-gestation. Changing activity of eIF4EBP1, a direct inhibitor of ribosome biogenesis, is concurrent with ribosome downregulation and affects neurogenesis of the Satb2 lineage. Thus, the molecular logic of brain development includes the refinement of transcriptional programs by translation. Modeling of the developmental neocortex translatome is provided as an open-source searchable resource at https://shiny.mdc-berlin.de/cortexomics
Ser/Thr/Tyr Protein Phosphorylation in the Archaeon Halobacterium salinarum—A Representative of the Third Domain of Life
In the quest for the origin and evolution of protein phosphorylation, the major regulatory post-translational modification in eukaryotes, the members of archaea, the “third domain of life”, play a protagonistic role. A plethora of studies have demonstrated that archaeal proteins are subject to post-translational modification by covalent phosphorylation, but little is known concerning the identities of the proteins affected, the impact on their functionality, the physiological roles of archaeal protein phosphorylation/dephosphorylation, and the protein kinases/phosphatases involved. These limited studies led to the initial hypothesis that archaea, similarly to other prokaryotes, use mainly histidine/aspartate phosphorylation, in their two-component systems representing a paradigm of prokaryotic signal transduction, while eukaryotes mostly use Ser/Thr/Tyr phosphorylation for creating highly sophisticated regulatory networks. In antithesis to the above hypothesis, several studies showed that Ser/Thr/Tyr phosphorylation is also common in the bacterial cell, and here we present the first genome-wide phosphoproteomic analysis of the model organism of archaea, Halobacterium salinarum, proving the existence/conservation of Ser/Thr/Tyr phosphorylation in the “third domain” of life, allowing a better understanding of the origin and evolution of the so-called “Nature's premier” mechanism for regulating the functional properties of proteins
- …
