7,028 research outputs found

    DNA Microarray Analysis of Temporal and Spatial Variation of Bacterial Communities in Japanese Rivers

    Full text link
    『大阪大学大学院工学研究科環境・エネルギー工学専攻生物圏環境工学領域 研究活動報告』, (2008.4.1~2009.3.31), pp.24~35, 大阪大学大学院工学研究科環境・エネルギー工学専攻環境資源・材料学講座生物圏環境工学領域, 2009.5 に掲

    Modification of Angular Velocity by Inhomogeneous MRI Growth in Protoplanetary Disks

    Full text link
    We have investigated evolution of magneto-rotational instability (MRI) in protoplanetary disks that have radially non-uniform magnetic field such that stable and unstable regions coexist initially, and found that a zone in which the disk gas rotates with a super-Keplerian velocity emerges as a result of the non-uniformly growing MRI turbulence. We have carried out two-dimensional resistive MHD simulations with a shearing box model. We found that if the spatially averaged magnetic Reynolds number, which is determined by widths of the stable and unstable regions in the initial conditions and values of the resistivity, is smaller than unity, the original Keplerian shear flow is transformed to the quasi-steady flow such that more flattened (rigid-rotation in extreme cases) velocity profile emerges locally and the outer part of the profile tends to be super-Keplerian. Angular momentum and mass transfer due to temporally generated MRI turbulence in the initially unstable region is responsible for the transformation. In the local super-Keplerian region, migrations due to aerodynamic gas drag and tidal interaction with disk gas are reversed. The simulation setting corresponds to the regions near the outer and inner edges of a global MRI dead zone in a disk. Therefore, the outer edge of dead zone, as well as the inner edge, would be a favorable site to accumulate dust particles to form planetesimals and retain planetary embryos against type I migration.Comment: 28 pages, 11figures, 1 table, accepted by Ap

    Magnetic systems at criticality: different signatures of scaling

    Get PDF
    Different aspects of critical behaviour of magnetic materials are presented and discussed. The scaling ideas are shown to arise in the context of purely magnetic properties as well as in that of thermal properties as demonstrated by magnetocaloric effect or combined scaling of excess entropy and order parameter. Two non-standard approaches to scaling phenomena are described. The presented concepts are exemplified by experimental data gathered on four representatives of molecular magnets.Comment: 33 pages, 16 figure

    Detection of skewed X-chromosome inactivation in Fragile X syndrome and X chromosome aneuploidy using quantitative melt analysis.

    Get PDF
    Methylation of the fragile X mental retardation 1 (FMR1) exon 1/intron 1 boundary positioned fragile X related epigenetic element 2 (FREE2), reveals skewed X-chromosome inactivation (XCI) in fragile X syndrome full mutation (FM: CGG > 200) females. XCI skewing has been also linked to abnormal X-linked gene expression with the broader clinical impact for sex chromosome aneuploidies (SCAs). In this study, 10 FREE2 CpG sites were targeted using methylation specific quantitative melt analysis (MS-QMA), including 3 sites that could not be analysed with previously used EpiTYPER system. The method was applied for detection of skewed XCI in FM females and in different types of SCA. We tested venous blood and saliva DNA collected from 107 controls (CGG < 40), and 148 FM and 90 SCA individuals. MS-QMA identified: (i) most SCAs if combined with a Y chromosome test; (ii) locus-specific XCI skewing towards the hypomethylated state in FM females; and (iii) skewed XCI towards the hypermethylated state in SCA with 3 or more X chromosomes, and in 5% of the 47,XXY individuals. MS-QMA output also showed significant correlation with the EpiTYPER reference method in FM males and females (P < 0.0001) and SCAs (P < 0.05). In conclusion, we demonstrate use of MS-QMA to quantify skewed XCI in two applications with diagnostic utility

    On the formation of hot Neptunes and super-Earths

    Full text link
    The discovery of short-period Neptune-mass objects, now including the remarkable system HD69830 (Lovis et al. 2006) with three Neptune analogues, raises difficult questions about current formation models which may require a global treatment of the protoplanetary disc. Several formation scenarios have been proposed, where most combine the canonical oligarchic picture of core accretion with type I migration (e.g. Terquem & Papaloizou 2007) and planetary atmosphere physics (e.g. Alibert et al. 2006). To date, published studies have considered only a small number of progenitors at late times. This leaves unaddressed important questions about the global viability of the models. We seek to determine whether the most natural model -- namely, taking the canonical oligarchic picture of core accretion and introducing type I migration -- can succeed in forming objects of 10 Earth masses and more in the innermost parts of the disc. This problem is investigated using both traditional semianalytic methods for modelling oligarchic growth as well as a new parallel multi-zone N-body code designed specifically for treating planetary formation problems with large dynamic range (McNeil & Nelson 2009). We find that it is extremely difficult for oligarchic tidal migration models to reproduce the observed distribution. Even under many variations of the typical parameters, we form no objects of mass greater than 8 Earth masses. By comparison, it is relatively straightforward to form icy super-Earths. We conclude that either the initial conditions of the protoplanetary discs in short-period Neptune systems were substantially different from the standard disc models we used, or there is important physics yet to be understood.Comment: 19 pages, 18 figures. Final version accepted to MNRAS 30 September 200

    Multiple Detection of Occurrence of Bacterial Pathogens in Two Rivers in the Kinki District of Japan with a DNA Microarray

    Full text link
    『大阪大学大学院工学研究科環境・エネルギー工学専攻生物圏環境工学領域 研究活動報告』, (2008.4.1~2009.3.31), pp.105~117, 大阪大学大学院工学研究科環境・エネルギー工学専攻環境資源・材料学講座生物圏環境工学領域, 2009.5 に掲

    Metal-insulator transition in the two-orbital Hubbard model at fractional band fillings: Self-energy functional approach

    Full text link
    We investigate the infinite-dimensional two-orbital Hubbard model at arbitrary band fillings. By means of the self-energy functional approach, we discuss the stability of the metallic state in the systems with same and different bandwidths. It is found that the Mott insulating phases are realized at commensurate band fillings. Furthermore, it is clarified that the orbital selective Mott phase with one orbital localized and the other itinerant is stabilized even at fractional band fillings in the system with different bandwidths.Comment: 7 pages, 10 figure

    Possible Ordered States in the 2D Extended Hubbard Model

    Full text link
    Possible ordered states in the 2D extended Hubbard model with on-site (U>0) and nearest-neighbor (V) interaction are examined near half filling, with emphasis on the effect of finite V. First, the phase diagram at absolute zero is determined in the mean field approximation. For V<0V<0, a state where d_{x^{2}-y^{2}}-wave superconductivity (dSC), commensurate spin-density-wave (SDW) and π\pi-triplet pair coexist is seen to be stabilized. Here, the importance of π\pi-triplet pair on the coexistence of dSC and SDW is indicated. This coexistent state is hampered by the phase separation (PS), which is generally expected to occur in the presence of finite-range attractive interaction, but survives. For V>0, a state where commensurate charge-density-wave (CDW), SDW and ferromagnetism (FM) coexist is seen to be stabilized. Here, the importance of FM on the coexistence of CDW and SDW is indicated. Next, in order to examine the effects of fluctuation on each mean field ordered state, the renormalization group method for the special case that the Fermi level lies just on the saddle points, (π\pi,0) and (0,π\pi), is applied. The crucial difference from the mean field result is that superconductivity can arise even for U>0 and V0V\geq0, where the superconducting gap symmetry is d_{x^{2}-y^{2}}-wave for U>4V and s-wave for U<4V. Finally, the possibilities that the mean field coexistent states survive in the presence of fluctuation are discussed.Comment: 12 pages, 19 figures included, revised versio
    corecore