2,791 research outputs found

    High Frequency Quantum Admittance and Noise Measurement with an On-chip Resonant Circuit

    Full text link
    By coupling a quantum detector, a superconductor-insulator-superconductor junction, to a Josephson junction \textit{via} a resonant circuit we probe the high frequency properties, namely the ac complex admittance and the current fluctuations of the Josephson junction at the resonant frequencies. The admittance components show frequency dependent singularities related to the superconducting density of state while the noise exhibits a strong frequency dependence, consistent with theoretical predictions. The circuit also allows to probe separately the emission and absorption noise in the quantum regime of the superconducting resonant circuit at equilibrium. At low temperature the resonant circuit exhibits only absorption noise related to zero point fluctuations, whereas at higher temperature emission noise is also present.Comment: 15 pages, 15 figure

    Direct access to quantum fluctuations through cross-correlation measurements

    Full text link
    Detection of the quantum fluctuations by conventional methods meets certain obstacles, since it requires high frequency measurements. Moreover, quantum fluctuations are normally dominated by classical noise, and are usually further obstructed by various accompanying effects such as a detector backaction. In present work, we demonstrate that these difficulties can be bypassed by performing the cross-correlation measurements. We propose to use a pair of two-level detectors, weakly coupled to a collective mode of an electric circuit. Fluctuations of the current source accumulated in the collective mode induce stochastic transitions in the detectors. These transitions are then read off by quantum point contact (QPC) electrometers and translated into two telegraph processes in the QPC currents. Since both detectors interact with the same collective mode, this leads to a certain fraction of the correlated transitions. These correlated transitions are fingerprinted in the cross-correlations of the telegraph processes, which can be detected at zero frequency, i.e., with a long time measurements. Concerning the dependance of the cross-correlator on the detectors' energy splittings, the most interesting region is at the degeneracy points, where it exhibits a sharp non-local resonance, that stems from higher order processes. We find that at certain conditions the main contribution to this resonance comes from the quantum noise. Namely, while the resonance line shape is weakly broadened by the classical noise, the height of the peak is directly proportional to the square of the quantum component of the noise spectral function.Comment: Added discussion of the time scales in the introduction and one figure. 14 pages, 8 figure

    Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    Get PDF
    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients

    Weber blockade theory of magnetoresistance oscillations in superconducting strips

    Get PDF
    Recent experiments on the conductance of thin, narrow superconducting strips have found periodic fluctuations, as a function of the perpendicular magnetic field, with a period corresponding to approximately two flux quanta per strip area [A. Johansson et al., Phys. Rev. Lett. {\bf 95}, 116805 (2005)]. We argue that the low-energy degrees of freedom responsible for dissipation correspond to vortex motion. Using vortex/charge duality, we show that the superconducting strip behaves as the dual of a quantum dot, with the vortices, magnetic field, and bias current respectively playing the roles of the electrons, gate voltage and source-drain voltage. In the bias-current vs. magnetic-field plane, the strip conductance displays what we term `Weber blockade' diamonds, with vortex conductance maxima (i.e., electrical resistance maxima) that, at small bias-currents, correspond to the fields at which strip states of NN and N+1N+1 vortices have equal energy.Comment: 4+a bit pages, 3 figures, 1 tabl

    Effect of the shot-noise on a Coulomb blockaded single Josephson junction

    Full text link
    We have investigated how the Coulomb blockade of a mesoscopic Josephson junction in a high-impedance environment is suppressed by shot noise from an adjacent junction. The presented theoretical analysis is an extension of the phase correlation theory for the case of a non-Gaussian noise. Asymmetry of the non-Gaussian noise should result in the shift of the conductance minimum from zero voltage and the ratchet effect (nonzero current at zero voltage), which have been experimentally observed. The analysis demonstrates that a Coulomb blockaded tunnel junction in a high impedance environment can be used as an effective noise detector.Comment: 4 pages, 1 figure; figure and typos corrected, added reference

    A one-channel conductor in an ohmic environment: mapping to a TLL and full counting statistics

    Full text link
    It is shown that a one-channel mesoscopic conductor in an ohmic environment can be mapped to the problem of a backscattering impurity in a Tomonaga-Luttinger liquid (TLL). This allows to determine non perturbatively the effect of the environment on IVI-V curves, and to find an exact relationship between dynamic Coulomb blockade and shot noise. We investigate critically how this relationship compares to recent proposals in the literature. The full counting statistics is determined at zero temperature.Comment: 5 pages, 2 figures, shortened version for publication in Phys. Rev. Let

    Macroscopic quantum tunneling in globally coupled series arrays of Josephson junctions

    Full text link
    We present a quantitative analysis of an escape rate for switching from the superconducting state to a resistive one in series arrays of globally coupled Josephson junctions. A global coupling is provided by an external shunting impedance. Such an impedance can strongly suppress both the crossover temperature from the thermal fluctuation to quantum regimes, and the macroscopic quantum tunneling (MQT) in short Josephson junction series arrays. However, in large series arrays we obtain an enhancement of the crossover temperature, and a giant increase of the MQT escape rate. The effect is explained by excitation of a {\it spatial-temporal charge instanton} distributed over a whole structure. The model gives a possible explanation of recently published experimental results on an enhancement of the MQT in single crystals of high-TcT_c superconductors.Comment: 4 pages, 3 figure

    Experimental Test of the Dynamical Coulomb Blockade Theory for Short Coherent Conductors

    Full text link
    We observed the recently predicted quantum suppression of dynamical Coulomb blockade on short coherent conductors by measuring the conductance of a quantum point contact embedded in a tunable on-chip circuit. Taking advantage of the circuit modularity we measured most parameters used by the theory. This allowed us to perform a reliable and quantitative experimental test of the theory. Dynamical Coulomb blockade corrections, probed up to the second conductance plateau of the quantum point contact, are found to be accurately normalized by the same Fano factor as quantum shot noise, in excellent agreement with the theoretical predictions.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Thermal fluctuation field for current-induced domain wall motion

    Full text link
    Current-induced domain wall motion in magnetic nanowires is affected by thermal fluctuation. In order to account for this effect, the Landau-Lifshitz-Gilbert equation includes a thermal fluctuation field and literature often utilizes the fluctuation-dissipation theorem to characterize statistical properties of the thermal fluctuation field. However, the theorem is not applicable to the system under finite current since it is not in equilibrium. To examine the effect of finite current on the thermal fluctuation, we adopt the influence functional formalism developed by Feynman and Vernon, which is known to be a useful tool to analyze effects of dissipation and thermal fluctuation. For this purpose, we construct a quantum mechanical effective Hamiltonian describing current-induced domain wall motion by generalizing the Caldeira-Leggett description of quantum dissipation. We find that even for the current-induced domain wall motion, the statistical properties of the thermal noise is still described by the fluctuation-dissipation theorem if the current density is sufficiently lower than the intrinsic critical current density and thus the domain wall tilting angle is sufficiently lower than pi/4. The relation between our result and a recent result, which also addresses the thermal fluctuation, is discussed. We also find interesting physical meanings of the Gilbert damping alpha and the nonadiabaticy parameter beta; while alpha characterizes the coupling strength between the magnetization dynamics (the domain wall motion in this paper) and the thermal reservoir (or environment), beta characterizes the coupling strength between the spin current and the thermal reservoir.Comment: 16 page, no figur

    Universal point contact resistance between thin-film superconductors

    Get PDF
    A system comprising two superconducting thin films connected by a point contact is considered. The contact resistance is calculated as a function of temperature and film geometry, and is found to vanish rapidly with temperature, according to a universal, nearly activated form, becoming strictly zero only at zero temperature. At the lowest temperatures, the activation barrier is set primarily by the superfluid stiffness in the films, and displays only a weak (i.e., logarithmic) temperature dependence. The Josephson effect is thus destroyed, albeit only weakly, as a consequence of the power-law-correlated superconducting fluctuations present in the films below the Berezinskii-Kosterlitz-Thouless transition temperature. The behavior of the resistance is discussed, both in various limiting regimes and as it crosses over between these regimes. Details are presented of a minimal model of the films and the contact, and of the calculation of the resistance. A formulation in terms of quantum phase-slip events is employed, which is natural and effective in the limit of a good contact. However, it is also shown to be effective even when the contact is poor and is, indeed, indispensable, as the system always behaves as if it were in the good-contact limit at low enough temperature. A simple mechanical analogy is introduced to provide some heuristic understanding of the nearly-activated temperature dependence of the resistance. Prospects for experimental tests of the predicted behavior are discussed, and numerical estimates relevant to anticipated experimental settings are provided.Comment: 29 pages (single column format), 7 figure
    corecore