840 research outputs found
Efficacy of single and double SiNx interlayers on defect reduction in GaN overlayers grown by organometallic vapor-phase epitaxy
We report on the growth of and evolution of defects in GaN epilayers having single- and double-layer SiNx nanoporous insertion layers. The SiNx was formed in situ in the growth chamber of an organometallic vapor-phase epitaxy system by simultaneous flow of diluted silane and ammonia. The GaN epilayers and SiNx interlayers were grown on 6H-SiC substrates using three different nucleation layers, namely, low-temperature GaN, high-temperature GaN, and high-temperature AlN nucleation layers. X-ray-diffraction rocking curves and cross-sectional and plan-view transmission electron microscope analyses indicated that a nanoporous SiNx layer can reduce the dislocations density in the GaN overgrown layer to ∼3×108cm−2 range; below this level the defect blocking effect of SiNx would saturate. Therefore the insertion of a second SiNx layer becomes much less effective in reducing dislocations, although it continues to reduce the point defects, as suggested by time-resolved photoluminescence measurements. The insertion of SiNx interlayers was found to improve significantly the mechanical strength of the GaN epilayers resulting in a much lower crack line density
Mammalian Target of Rapamycin (mTOR) Activity Dependent Phospho-Protein Expression in Childhood Acute Lymphoblastic Leukemia (ALL)
Modern treatment strategies have improved the prognosis of childhood ALL; however, treatment still fails in 25–30% of
patients. Further improvement of treatment may depend on the development of targeted therapies. mTOR kinase, a central
mediator of several signaling pathways, has recently attracted remarkable attention as a potential target in pediatric ALL.
However, limited data exists about the activity of mTOR. In the present study, the amount of mTOR activity dependent
phospho-proteins was characterized by ELISA in human leukemia cell lines and in lymphoblasts from childhood ALL
patients (n = 49). Expression was measured before and during chemotherapy and at relapses. Leukemia cell lines exhibited
increased mTOR activity, indicated by phospho-S6 ribosomal protein (p-S6) and phosphorylated eukaryotic initiation factor
4E binding protein (p-4EBP1). Elevated p-4EBP1 protein levels were detected in ALL samples at diagnosis; efficacy of
chemotherapy was followed by the decrease of mTOR activity dependent protein phosphorylation. Optical density (OD) for
p-4EBP1 (ELISA) was significantly higher in patients with poor prognosis at diagnosis, and in the samples of relapsed
patients. Our results suggest that measuring mTOR activity related phospho-proteins such as p-4EBP1 by ELISA may help to
identify patients with poor prognosis before treatment, and to detect early relapses. Determining mTOR activity in leukemic
cells may also be a useful tool for selecting patients who may benefit from future mTOR inhibitor treatments
High-Content Chemical and RNAi Screens for Suppressors of Neurotoxicity in a Huntington's Disease Model
To identify Huntington's Disease therapeutics, we conducted high-content small molecule and RNAi suppressor screens using a Drosophila primary neural culture Huntingtin model. Drosophila primary neurons offer a sensitive readout for neurotoxicty, as their neurites develop dysmorphic features in the presence of mutant polyglutamine-expanded Huntingtin compared to nonpathogenic Huntingtin. By tracking the subcellular distribution of mRFP-tagged pathogenic Huntingtin and assaying neurite branch morphology via live-imaging, we identified suppressors that could reduce Huntingtin aggregation and/or prevent the formation of dystrophic neurites. The custom algorithms we used to quantify neurite morphologies in complex cultures provide a useful tool for future high-content screening approaches focused on neurodegenerative disease models. Compounds previously found to be effective aggregation inhibitors in mammalian systems were also effective in Drosophila primary cultures, suggesting translational capacity between these models. However, we did not observe a direct correlation between the ability of a compound or gene knockdown to suppress aggregate formation and its ability to rescue dysmorphic neurites. Only a subset of aggregation inhibitors could revert dysmorphic cellular profiles. We identified lkb1, an upstream kinase in the mTOR/Insulin pathway, and four novel drugs, Camptothecin, OH-Camptothecin, 18β-Glycyrrhetinic acid, and Carbenoxolone, that were strong suppressors of mutant Huntingtin-induced neurotoxicity. Huntingtin neurotoxicity suppressors identified through our screen also restored viability in an in vivo Drosophila Huntington's Disease model, making them attractive candidates for further therapeutic evaluation.National Institutes of Health (U.S.) (grant R01 EB007042)National Institutes of Health (U.S.
AKT overactivation can suppress DNA repair via p70S6 kinase-dependent downregulation of MRE11
Deregulated AKT kinase activity due to PTEN deficiency in cancer cells contributes to oncogenesis by incompletely understood mechanisms. Here, we show that PTEN deletion in HCT116 and DLD1 colon carcinoma cells leads to suppression of CHK1 and CHK2 activation in response to irradiation, impaired G2 checkpoint proficiency and radiosensitization. These defects are associated with reduced expression of MRE11, RAD50 and NBS1, components of the apical MRE11/RAD50/NBS1 (MRN) DNA damage response complex. Consistent with reduced MRN complex function, PTEN-deficient cells fail to resect DNA double-strand breaks efficiently after irradiation and show greatly diminished proficiency for DNA repair via the error-free homologous recombination (HR) repair pathway. MRE11 is highly unstable in PTEN-deficient cells but stability can be significantly restored by inhibiting mTORC1 or p70S6 kinase (p70S6K), downstream kinases whose activities are stimulated by AKT, or by mutating a residue in MRE11 that we show is phosphorylated by p70S6K in vitro. In primary human fibroblasts, activated AKT suppresses MRN complex expression to escalate RAS-induced DNA damage and thereby reinforce oncogene-induced senescence. Taken together, our data demonstrate that deregulation of the PI3K-AKT/ mTORC1/ p70S6K pathways, an event frequently observed in cancer, exert profound effects on genome stability via MRE11 with potential implications for tumour initiation and therapy
The role of resveratrol on skeletal muscle cell differentiation and myotube hypertrophy during glucose restriction
Glucose restriction (GR) impairs muscle cell differentiation and evokes myotube atrophy. Resveratrol treatment in skeletal
muscle cells improves inflammatory-induced reductions in skeletal muscle cell differentiation. We therefore hypothesised
that resveratrol treatment would improve muscle cell differentiation and myotube hypertrophy in differentiating C2C12
myoblasts and mature myotubes during GR. Glucose restriction at 0.6 g/L (3.3 mM) blocked differentiation and myotube
hypertrophy versus high-glucose (4.5 g/L or 25 mM) differentiation media (DM) conditions universally used for myoblast
culture. Resveratrol (10 μM) treatment increased SIRT1 phosphorylation in DM conditions, yet did not improve differentiation
when administered to differentiating myoblasts in GR conditions. Resveratrol did evoke increases in hypertrophy of mature
myotubes under DM conditions with corresponding elevated Igf-I and Myhc7 gene expression, coding for the ‘slow’ type I
MYHC protein isoform. Inhibition of SIRT1 via EX-527 administration (100 nM) also reduced myotube diameter and area
in DM conditions and resulted in lower gene expression of Myhc 1, 2 and 4 coding for ‘intermediate’ and ‘faster’ IIx, IIa
and IIb protein isoforms, respectively. Resveratrol treatment did not appear to modulate phosphorylation of energy-sensing
protein AMPK or protein translation initiator P70S6K. Importantly, in mature myotubes, resveratrol treatment was able to
ameliorate reduced myotube growth in GR conditions over an acute 24-h period, but not over 48–72 h. Overall, resveratrol
evoked myotube hypertrophy in DM conditions while favouring ‘slower’ Myhc gene expression and acutely ameliorated
impaired myotube growth observed during glucose restriction
AMP-activated protein kinase - not just an energy sensor
Orthologues of AMP-activated protein kinase (AMPK) occur in essentially all eukaryotes as heterotrimeric complexes comprising catalytic α subunits and regulatory β and γ subunits. The canonical role of AMPK is as an energy sensor, monitoring levels of the nucleotides AMP, ADP, and ATP that bind competitively to the γ subunit. Once activated, AMPK acts to restore energy homeostasis by switching on alternate ATP-generating catabolic pathways while switching off ATP-consuming anabolic pathways. However, its ancestral role in unicellular eukaryotes may have been in sensing of glucose rather than energy. In this article, we discuss a few interesting recent developments in the AMPK field. Firstly, we review recent findings on the canonical pathway by which AMPK is regulated by adenine nucleotides. Secondly, AMPK is now known to be activated in mammalian cells by glucose starvation by a mechanism that occurs in the absence of changes in adenine nucleotides, involving the formation of complexes with Axin and LKB1 on the surface of the lysosome. Thirdly, in addition to containing the nucleotide-binding sites on the γ subunits, AMPK heterotrimers contain a site for binding of allosteric activators termed the allosteric drug and metabolite (ADaM) site. A large number of synthetic activators, some of which show promise as hypoglycaemic agents in pre-clinical studies, have now been shown to bind there. Fourthly, some kinase inhibitors paradoxically activate AMPK, including one (SU6656) that binds in the catalytic site. Finally, although downstream targets originally identified for AMPK were mainly concerned with metabolism, recently identified targets have roles in such diverse areas as mitochondrial fission, integrity of epithelial cell layers, and angiogenesis
Metformin as an Adjunctive Therapy for Pancreatic Cancer: A Review of the Literature on Its Potential Therapeutic Use
Pancreatic ductal adenocarcinoma has the worst prognosis of any cancer. New adjuvant chemotherapies are urgently required, which are well tolerated by patients with unresectable cancers. This paper reviews the existing proof of concept data, namely laboratory, pharmacoepidemiological, experimental medicine and clinical trial evidence for investigating metformin in patients with pancreatic ductal adenocarcinoma. Laboratory evidence shows metformin inhibits mitochondrial ATP synthesis which directly and indirectly inhibits carcinogenesis. Drug–drug interactions of metformin with proton pump inhibitors and histamine H2-receptor antagonists may be of clinical relevance and pertinent to future research of metformin in pancreatic ductal adenocarcinoma. To date, most cohort studies have demonstrated a positive association with metformin on survival in pancreatic ductal adenocarcinoma, although there are many methodological limitations with such study designs. From experimental medicine studies, there are sparse data in humans. The current trials of metformin have methodological limitations. Two small randomized controlled trials (RCTs) reported null findings, but there were potential inequalities in cancer staging between groups and poor compliance with the intervention. Proof of concept data, predominantly from laboratory work, supports assessing metformin as an adjunct for pancreatic ductal adenocarcinoma in RCTs. Ideally, more experimental medicine studies are needed for proof of concept. However, many feasibility criteria need to be answered before such trials can progress
AMPK:a nutrient and energy sensor that maintains energy homeostasis
AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability
mTOR: from growth signal integration to cancer, diabetes and ageing
In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy
and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.National Institutes of Health (U.S.)Howard Hughes Medical InstituteWhitehead Institute for Biomedical ResearchJane Coffin Childs Memorial Fund for Medical Research (Postdoctoral Fellowship)Human Frontier Science Program (Strasbourg, France
AMPK in Pathogens
During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host–pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.CIHR -Canadian Institutes of Health Researc
- …
