561 research outputs found
Representation of the pulsed output from a mode-locked laser using quantum field theory and an application in multiphoton ionisation
Preliminary measurements of turbulence and environmental parameters in a sub-tropical estuary of Eastern Australia
In natural systems, mixing is driven by turbulence, but current knowledge is very limited in estuarine zones where predictions of contaminant dispersion are often inaccurate. A series of detailed field studies was conducted in a small subtropical creek in eastern Australia. Hydrodynamic, physio-chemical and ecological measurements were conducted simultaneously to assess the complexity of the estuarine zone and the interactions between turbulence and environment. The measurements were typically performed at high frequency over a tidal cycle. The results provide an original data set to complement long-term monitoring and the basis for a more detailed study of mixing in sub-tropical systems. Unlike many long-term observations, velocity and water quality scalars were measured herein with sufficient spatial and temporal resolutions to determine quantities of interest in the study of turbulence, while ecological indicators were sampled systematically and simultaneously. In particular the results yielded contrasted outcomes, and the finding impacts on the selection process for key water quality indicators
Optics and Quantum Electronics
Contains reports on eleven research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Science Foundation (Grant ECS83-05448)National Science Foundation (Grant ECS83-10718)National Science Foundation (Grant ECS82-11650)National Science Foundation (Grant ECS84-06290)U.S. Air Force - Office of Scientific Research (Contract AFOSR-85-0213)National Institutes of Health (Grant 1 RO1 GM35459
Quantum Electronics
Contains reports on three research projects.National Science Foundation (Grant PHY77-07156)Joint Services Electronics Program (Contract DAABO7-76-C-1400)U. S. Air Force - Office of Scientific Research (Grant AFOSR-76-3042)U. S. Air Force - Office of Scientific Research (Contract F-44620-76-C-0079)M.I.T. Sloan Fund for Basic Researc
Spectral Line-by-Line Pulse Shaping of an On-Chip Microresonator Frequency Comb
We report, for the first time to the best of our knowledge, spectral phase
characterization and line-by-line pulse shaping of an optical frequency comb
generated by nonlinear wave mixing in a microring resonator. Through
programmable pulse shaping the comb is compressed into a train of
near-transform-limited pulses of \approx 300 fs duration (intensity full width
half maximum) at 595 GHz repetition rate. An additional, simple example of
optical arbitrary waveform generation is presented. The ability to characterize
and then stably compress the frequency comb provides new data on the stability
of the spectral phase and suggests that random relative frequency shifts due to
uncorrelated variations of frequency dependent phase are at or below the 100
microHertz level.Comment: 18 pages, 4 figure
Optics and Quantum Electronics
Contains reports on ten research projects.Joint Services Electronics Program (Contract DAALO3-86-K-0002)National Science Foundation (Grant ECS 83-05448)National Science Foundation (Grant ECS 83-10718)National Science Foundation (Grant ECS 82-11650)National Science Foundation (Grant ECS 84-13178)National Science Foundation (Grant ECS 85-52701)US Air Force - Office of Scientific Research (Contract AFOSR-85-0213)National Institutes of Health (Contract 5-RO1-GM35459)U.S. Navy - Office of Naval Research (Contract N00014-86-K-0117
Submicron Structures Technology and Research
Contains reports on fourteen research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)U.S. Navy - Office of Naval Research (Contract N00014-79-C-0908)National Science Foundation (Grant ECS82-05701)Semiconductor Research Corporation (Grant 83-01-033)U.S. Department of Energy (Contract DE-ACO2-82-ER-13019)Lawrence Livermore National Laboratory (Contract 2069209)National Aeronautics and Space Administration (Contract NAS5-27591)Defense Advanced Research Projects Agency (Contract N00014-79-C-0908)National Science Foundation (Grant ECS80-17705)National Aeronautics and Space Administration (Contract NGL22-009-638
- …
