3,820 research outputs found
Large amplitude oscillations in prominences
Since the first reports of oscillations in prominences in the 1930s, there have been major theoretical and observational developments to understand the nature of these oscillatory phenomena, leading to the whole new field of the so-called “prominence seismology”. There are two types of oscillatory phenomena observed in prominences; “small
amplitude oscillations” (2–3 km s−1), which are quite common, and “large-amplitude oscillations” (>20 km s−1) for which observations are scarce. Large-amplitude oscillations have been found as “winking filament” in Hα as well as motion in the plane-of-sky in Hα, EUV, micro-wave and He 10830 observations. Historically, it has been suggested that the large-amplitude oscillations in prominences were triggered by disturbances such as fastmode MHD waves (Moreton wave) produced by remote flares. Recent observations show, in addition, that near-by flares or jets can also create such large-amplitude oscillations in prominences. Large-amplitude oscillations, which are observed both in transverse as well as longitudinal direction, have a range of periods varying from tens of minutes to a few hours. Using the observed period of oscillation and simple theoretical models, the obtained magnetic field in prominences has shown quite a good agreement with directly measured one and, therefore, justifies prominence seismology as a powerful diagnostic tool. On rare occasions, when the large-amplitude oscillations have been observed before or during the eruption, the oscillations may be applied to diagnose the stability and the eruption mechanism. Here we review the recent developments and understanding in the observational properties of large-amplitude oscillations and their trigger mechanisms and stability in the context of prominence seismology
Large amplitude oscillation of an erupting filament as seen in EUV, H-alpha and microwave observations
We present multiwavelength observations of a large-amplitude oscillation of a polar-crown filament on 15 October 2002, which has been reported by Isobe and Tripathi (Astron. Astrophys. 449, L17, 2006). The oscillation occurred during the slow rise (≈1 km s−1) of the filament. It completed three cycles before sudden acceleration and eruption. The oscillation and following eruption were clearly seen in observations recorded by the Extreme-Ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). The oscillation was seen only in a part of the filament, and it appears to be a standing oscillation rather than a propagating wave. The amplitudes of velocity and spatial displacement of the oscillation in the plane of the sky were about 5 km s−1 and 15 000 km, respectively. The period of oscillation was about two hours and did not change significantly during the oscillation. The oscillation was also observed in Hα by the Flare Monitoring Telescope at the Hida Observatory. We determine the three-dimensional motion of the oscillation from the Hα wing images. The maximum line-of-sight velocity was estimated to be a few tens of kilometers per second, although the uncertainty is large owing to the lack of line-profile information. Furthermore, we also identified the spatial displacement of the oscillation in 17-GHz microwave images from Nobeyama Radio Heliograph (NoRH). The filament oscillation seems to be triggered by magnetic reconnection between a filament barb and nearby emerging magnetic flux as was evident from the MDI magnetogram observations. No flare was observed to be associated with the onset of the oscillation. We also discuss possible implications of the oscillation as a diagnostic tool for the eruption mechanisms. We suggest that in the early phase of eruption a part of the filament lost its equilibrium first, while the remaining part was still in an equilibrium and oscillated
Velocity Statistics in the Two-Dimensional Granular Turbulence
We studied the macroscopic statistical properties on the freely evolving
quasi-elastic hard disk (granular) system by performing a large-scale (up to a
few million particles) event-driven molecular dynamics systematically and found
that remarkably analogous to an enstrophy cascade process in the decaying
two-dimensional fluid turbulence. There are four typical stages in the freely
evolving inelastic hard disk system, which are homogeneous, shearing (vortex),
clustering and final state. In the shearing stage, the self-organized
macroscopic coherent vortices become dominant. In the clustering stage, the
energy spectra are close to the expectation of Kraichnan-Batchelor theory and
the squared two-particle separation strictly obeys Richardson law.Comment: 4 pages, 4 figures, to be published in PR
Optical properties of NaxV2O5
The optical properties of sodium-deficient NaxV2O5 (0.85 < x <1) single
crystals are analyzed in the wide energy range, from 0.012 to 4.5 eV, using
ellipsometry, infrared reflectivity, and Raman scattering techniques. The
material remains insulating up to the maximal achieved hole concentration of
about 15%. In sodium deficient samples the optical absorption peak associated
to the fundamental electronic gap develops at about 0.44 eV. It corresponds to
the transition between vanadium dxy and the impurity band, which forms in the
middle of the pure NaV2O5 gap. Raman spectra measured with incident photon
energy larger then 2 eV show strong resonant behavior, due to the presence of
the hole-doping activated optical transitions, peaked at 2.8 eV.Comment: 7 pages, 4 fugures, to be published in PR
Anomalous thermal conductivity of NaV2O5 as compared to conventional spin-Peierls system CuGeO3
A huge increase of thermal conductivity k is observed at the phase transition
in stoichiometric NaV2O5. This anomaly decreases and gradually disappears with
deviation from stoichiometry in Na(1-x}V2O5 (x = 0.01, 0.02, 0.03, and 0.04).
This behavior is compared with that of pure and Zn-doped CuGeO3 where only
modest kinks in the k(T) curves are observed at the spin-Peierls transition.
The change of k at critical temperature Tc could be partially attributed to the
opening of an energy gap in the magnetic excitation spectrum excluding the
scattering of thermal phonons on spin fluctuations. However, the reason for
such a strong anomaly in the k(T) may lie not only in the different energy
scales of CuGeO3 and NaV2O5, but also in the different character of the phase
transition in NaV2O5 which can have largely a structural origin, e.g. connected
with the charge ordering.Comment: PostScript 4 pages, 4 PostScript pictures. Submitted to Physical
Review Letter
Infrared phonon spectra of quasi-one-dimensional TaNiSe and TaNiS
Using a combination of infrared ellipsometry, time-domain terahertz
spectroscopy, and far-infrared reflectometry we have obtained the -plane
complex dielectric function of monoclinic () TaNiSe and
orthorhombic () TaNiS single crystals. The identified
dipole-active phonon modes polarized along and axes are in good
agreement with density functional theory calculations. With increasing
temperature the -axis phonon modes of TaNiSe become poorly
discernible, as they are superimposed on the electronic background which
gradually fills the energy gap near the monoclinic-to-orthorhombic phase
transition temperature = 326 K. In TaNiS, which does not exhibit
such a structural transition and remains orthorhombic down to low temperatures,
the -axis phonon modes are superimposed on a persistent broad electronic
mode centered near 16 meV. We attribute this difference to strongly overlapping
exciton-phonon complexes in TaNiSe, as opposed to isolated instances of
the same in TaNiS, and find this to be in good agreement with an
excitonic insulator state below in the former, as compared to the absence
of one in the latter.Comment: 10 pages, 7 figure
Break up of returning plasma after the 7 June 2011 filament eruption by Rayleigh-Taylor instabilities
A prominence eruption on 7 June 2011 produced spectacular curtains of plasma
falling through the lower corona. At the solar surface they created an
incredible display of extreme ultraviolet brightenings. The aim is to identify
and analyze some of the local instabilities which produce structure in the
falling plasma. The structures were investigated using SDO/AIA 171A and 193A
images in which the falling plasma appeared dark against the bright coronal
emission. Several instances of the Rayleigh-Taylor instability were
investigated. In two cases the Alfven velocity associated with the dense plasma
could be estimated from the separation of the Rayleigh-Taylor fingers. A second
type of feature, which has the appearance of self-similar branching horns, is
also discussed.Comment: 6 pages, 7 figures, submitted A&A. Movies are at
http://www.mps.mpg.de/data/outgoing/innes/arcs_movie.avi and
http://www.mps.mpg.de/data/outgoing/innes/horns_movie.av
Investigation of thermal and magnetic properties of defects in a spin-gap compound NaV2O5
The specific heat, magnetic susceptibility and ESR signals of a Na-deficient
vanadate Na_xV_2O_5 (x=1.00 - 0.90) were studied in the temperature range 0.07
- 10 K, well below the transition point to a spin-gap state. The contribution
of defects provided by sodium vacancies to the specific heat was observed. It
has a low temperature part which does not tend to zero till at least 0.3 K and
a high temperature power-like tail appears above 2 K. Such dependence may
correspond to the existence of local modes and correlations between defects in
V-O layers. The magnetic measurements and ESR data reveal S=1/2 degrees of
freedom for the defects, with their effective number increasing in temperature
and under magnetic field. The latter results in the nonsaturating magnetization
at low temperature. No long-range magnetic ordering in the system of defects
was found. A model for the defects based on electron jumps near vacancies is
proposed to explain the observed effects. The concept of a frustrated
two-dimensional correlated magnet induced by the defects is considered to be
responsible for the absence of magnetic ordering.Comment: 6 pages, 8 figure
Reanalysis of Copernicus Measurements on Interstellar Carbon Monoxide
We used archival data acquired with the Copernicus satellite to reexamine CO
column densities because self-consistent oscillator strengths are now
available. Our focus is on lines of sight containing modest amounts of
molecular species. Our resulting column densities are small enough that
self-shielding from photodissociation is not occurring in the clouds probed by
the observations. While our sample shows that the column densities of CO and H2
are related, no correspondence with the CH column density is evident. The case
for the CH+ column density is less clear. Recent chemical models for these
sight lines suggest that CH is mainly a by-product of CH+ synthesis in low
density gas. The models are most successful in reproducing the amounts of CO in
the densest sight lines. Thus, much of the CO absorption must arise from denser
clumps along the line of sight to account for the trend with H2.Comment: 19 pages, 6 figures. Accepted for publication in Ap
- …
