6,115 research outputs found
Recommended from our members
Mindfulness Meditation Activates Altruism.
Clinical evidence suggests that mindfulness meditation reduces anxiety, depression, and stress, and improves emotion regulation due to modulation of activity in neural substrates linked to the regulation of emotions and social preferences. However, less was known about whether mindfulness meditation might alter pro-social behavior. Here we examined whether mindfulness meditation activates human altruism, a component of social cooperation. Using a simple donation game, which is a real-world version of the Dictator's Game, we randomly assigned 326 subjects to a mindfulness meditation online session or control and measured their willingness to donate a portion of their payment for participation as a charitable donation. Subjects who underwent the meditation treatment donated at a 2.61 times higher rate than the control (p = 0.005), after controlling for socio-demographics. We also found a larger treatment effect of meditation among those who did not go to college (p < 0.001) and those who were under 25 years of age (p < 0.001), with both subject groups contributing virtually nothing in the control condition. Our results imply high context modularity of human altruism and the development of intervention approaches including mindfulness meditation to increase social cooperation, especially among subjects with low baseline willingness to contribute
The contrasting fission potential-energy structure of actinides and mercury isotopes
Fission-fragment mass distributions are asymmetric in fission of typical
actinide nuclei for nucleon number in the range
and proton number in the range . For somewhat
lighter systems it has been observed that fission mass distributions are
usually symmetric. However, a recent experiment showed that fission of
Hg following electron capture on Tl is asymmetric. We calculate
potential-energy surfaces for a typical actinide nucleus and for 12 even
isotopes in the range Hg--Hg, to investigate the similarities
and differences of actinide compared to mercury potential surfaces and to what
extent fission-fragment properties, in particular shell structure, relate to
the structure of the static potential-energy surfaces. Potential-energy
surfaces are calculated in the macroscopic-microscopic approach as functions of
fiveshape coordinates for more than five million shapes. The structure of the
surfaces are investigated by use of an immersion technique. We determine
properties of minima, saddle points, valleys, and ridges between valleys in the
5D shape-coordinate space. Along the mercury isotope chain the barrier heights
and the ridge heights and persistence with elongation vary significantly and
show no obvious connection to possible fragment shell structure, in contrast to
the actinide region, where there is a deep asymmetric valley extending from the
saddle point to scission. The mechanism of asymmetric fission must be very
different in the lighter proton-rich mercury isotopes compared to the actinide
region and is apparently unrelated to fragment shell structure. Isotopes
lighter than Hg have the saddle point blocked from a deep symmetric
valley by a significant ridge. The ridge vanishes for the heavier Hg isotopes,
for which we would expect a qualitatively different asymmetry of the fragments.Comment: 8 pages, 9 figure
Cooling of a Compact Star with a LOFF Matter Core
Specific heat and neutrino emissivity due to direct URCA processes for quark
matter in the color superconductive Larkin-Ovchinnikov-Fulde-Ferrell (LOFF)
phase of Quantum-Chromodynamics have been evaluated. The cooling rate of
simplified models of compact stars with a LOFF matter core is estimated.Comment: 3 pages, 1 figure, to appear in the proceedings of the Helmoltz
International Summer School of Theoretical Physics on Dense Matter in Heavy
Ion Collisions and Astrophysics, JINR, Dubna, Russia, 21 Aug - 1 Sep 200
- …
