6,867 research outputs found
Temperature induced phase averaging in one-dimensional mesoscopic systems
We analyse phase averaging in one-dimensional interacting mesoscopic systems
with several barriers and show that for incommensurate positions an independent
average over several phases can be induced by finite temperature. For three
strong barriers with conductances G_i and mutual distances larger than the
thermal length, we obtain G ~ sqrt{G_1 G_2 G_3} for the total conductance G.
For an interacting wire, this implies power laws in G(T) with novel exponents,
which we propose as an experimental fingerprint to distinguish temperature
induced phase averaging from dephasing.Comment: 6 pages, 5 figures; added one figure; slightly extende
Exact results for nonlinear ac-transport through a resonant level model
We obtain exact results for the transport through a resonant level model
(noninteracting Anderson impurity model) for rectangular voltage bias as a
function of time. We study both the transient behavior after switching on the
tunneling at time t = 0 and the ensuing steady state behavior. Explicit
expressions are obtained for the ac-current in the linear response regime and
beyond for large voltage bias. Among other effects, we observe current ringing
and PAT (photon assisted tunneling) oscillations.Comment: 7 page
Comparative study of theoretical methods for nonequilibrium quantum transport
We present a detailed comparison of three different methods designed to
tackle nonequilibrium quantum transport, namely the functional renormalization
group (fRG), the time-dependent density matrix renormalization group (tDMRG),
and the iterative summation of real-time path integrals (ISPI). For the
nonequilibrium single-impurity Anderson model (including a Zeeman term at the
impurity site), we demonstrate that the three methods are in quantitative
agreement over a wide range of parameters at the particle-hole symmetric point
as well as in the mixed-valence regime. We further compare these techniques
with two quantum Monte Carlo approaches and the time-dependent numerical
renormalization group method.Comment: 19 pages, 7 figures; published versio
Charge transport through single molecules, quantum dots, and quantum wires
We review recent progresses in the theoretical description of correlation and
quantum fluctuation phenomena in charge transport through single molecules,
quantum dots, and quantum wires. A variety of physical phenomena is addressed,
relating to co-tunneling, pair-tunneling, adiabatic quantum pumping, charge and
spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical
many-body methods to treat correlation effects, quantum fluctuations,
nonequilibrium physics, and the time evolution into the stationary state of
complex nanoelectronic systems.Comment: 48 pages, 14 figures, Topical Review for Nanotechnolog
Prospects for the Search for a Standard Model Higgs Boson in ATLAS using Vector Boson Fusion
The potential for the discovery of a Standard Model Higgs boson in the mass
range m_H < 2 m_Z in the vector boson fusion mode has been studied for the
ATLAS experiment at the LHC. The characteristic signatures of additional jets
in the forward regions of the detector and of low jet activity in the central
region allow for an efficient background rejection. Analyses for the H -> WW
and H -> tau tau decay modes have been performed using a realistic simulation
of the expected detector performance. The results obtained demonstrate the
large discovery potential in the H -> WW decay channel and the sensitivity to
Higgs boson decays into tau-pairs in the low-mass region around 120 GeV.Comment: 20 pages, 13 ps figures, uses EPJ style fil
Systematic behaviour of the in-plane penetration depth in d-wave cuprates
We report the temperature T and oxygen concentration dependences of the
penetration depth of grain-aligned YBa_2Cu_3O_{7-\delta} with \delta= 0.0, 0.3
and 0.43. The values of the in-plane \lambda_{ab}(0) and out-of-plane
\lambda_{c}(0) penetration depths, the low temperature linear term in
\lambda_{ab}(T), and the ratio \lambda_{c}(0) /\lambda_{ab}(T) were found to
increase with increasing . The systematic changes of the linear term in
\lambda_{ab}(T) with T_c found here and in recent work on HgBa_2Ca_{n-1}
Cu_nO_{2n+2+\delta} (n = 1 and 3) are discussed.Comment: 4 pages, 4 figure
Determining the Structure of Higgs Couplings at the LHC
Higgs boson production via weak boson fusion at the CERN Large Hadron
Collider has the capability to determine the dominant CP nature of a Higgs
boson, via the tensor structure of its coupling to weak bosons. This
information is contained in the azimuthal angle distribution of the two
outgoing forward tagging jets. The technique is independent of both the Higgs
boson mass and the observed decay channel.Comment: 5 pages, 4 figures, version accepted for publication in PR
Far-from-equilibrium quantum many-body dynamics
The theory of real-time quantum many-body dynamics as put forward in Ref.
[arXiv:0710.4627] is evaluated in detail. The formulation is based on a
generating functional of correlation functions where the Keldysh contour is
closed at a given time. Extending the Keldysh contour from this time to a later
time leads to a dynamic flow of the generating functional. This flow describes
the dynamics of the system and has an explicit causal structure. In the present
work it is evaluated within a vertex expansion of the effective action leading
to time evolution equations for Green functions. These equations are applicable
for strongly interacting systems as well as for studying the late-time
behaviour of nonequilibrium time evolution. For the specific case of a bosonic
N-component phi^4 theory with contact interactions an s-channel truncation is
identified to yield equations identical to those derived from the 2PI effective
action in next-to-leading order of a 1/N expansion. The presented approach
allows to directly obtain non-perturbative dynamic equations beyond the widely
used 2PI approximations.Comment: 20 pp., 6 figs; submitted version with added references and typos
corrected
- …
