6,867 research outputs found

    Temperature induced phase averaging in one-dimensional mesoscopic systems

    Full text link
    We analyse phase averaging in one-dimensional interacting mesoscopic systems with several barriers and show that for incommensurate positions an independent average over several phases can be induced by finite temperature. For three strong barriers with conductances G_i and mutual distances larger than the thermal length, we obtain G ~ sqrt{G_1 G_2 G_3} for the total conductance G. For an interacting wire, this implies power laws in G(T) with novel exponents, which we propose as an experimental fingerprint to distinguish temperature induced phase averaging from dephasing.Comment: 6 pages, 5 figures; added one figure; slightly extende

    Exact results for nonlinear ac-transport through a resonant level model

    Get PDF
    We obtain exact results for the transport through a resonant level model (noninteracting Anderson impurity model) for rectangular voltage bias as a function of time. We study both the transient behavior after switching on the tunneling at time t = 0 and the ensuing steady state behavior. Explicit expressions are obtained for the ac-current in the linear response regime and beyond for large voltage bias. Among other effects, we observe current ringing and PAT (photon assisted tunneling) oscillations.Comment: 7 page

    Comparative study of theoretical methods for nonequilibrium quantum transport

    Full text link
    We present a detailed comparison of three different methods designed to tackle nonequilibrium quantum transport, namely the functional renormalization group (fRG), the time-dependent density matrix renormalization group (tDMRG), and the iterative summation of real-time path integrals (ISPI). For the nonequilibrium single-impurity Anderson model (including a Zeeman term at the impurity site), we demonstrate that the three methods are in quantitative agreement over a wide range of parameters at the particle-hole symmetric point as well as in the mixed-valence regime. We further compare these techniques with two quantum Monte Carlo approaches and the time-dependent numerical renormalization group method.Comment: 19 pages, 7 figures; published versio

    Charge transport through single molecules, quantum dots, and quantum wires

    Full text link
    We review recent progresses in the theoretical description of correlation and quantum fluctuation phenomena in charge transport through single molecules, quantum dots, and quantum wires. A variety of physical phenomena is addressed, relating to co-tunneling, pair-tunneling, adiabatic quantum pumping, charge and spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical many-body methods to treat correlation effects, quantum fluctuations, nonequilibrium physics, and the time evolution into the stationary state of complex nanoelectronic systems.Comment: 48 pages, 14 figures, Topical Review for Nanotechnolog

    Prospects for the Search for a Standard Model Higgs Boson in ATLAS using Vector Boson Fusion

    Full text link
    The potential for the discovery of a Standard Model Higgs boson in the mass range m_H < 2 m_Z in the vector boson fusion mode has been studied for the ATLAS experiment at the LHC. The characteristic signatures of additional jets in the forward regions of the detector and of low jet activity in the central region allow for an efficient background rejection. Analyses for the H -> WW and H -> tau tau decay modes have been performed using a realistic simulation of the expected detector performance. The results obtained demonstrate the large discovery potential in the H -> WW decay channel and the sensitivity to Higgs boson decays into tau-pairs in the low-mass region around 120 GeV.Comment: 20 pages, 13 ps figures, uses EPJ style fil

    Systematic behaviour of the in-plane penetration depth in d-wave cuprates

    Full text link
    We report the temperature T and oxygen concentration dependences of the penetration depth of grain-aligned YBa_2Cu_3O_{7-\delta} with \delta= 0.0, 0.3 and 0.43. The values of the in-plane \lambda_{ab}(0) and out-of-plane \lambda_{c}(0) penetration depths, the low temperature linear term in \lambda_{ab}(T), and the ratio \lambda_{c}(0) /\lambda_{ab}(T) were found to increase with increasing δ\delta. The systematic changes of the linear term in \lambda_{ab}(T) with T_c found here and in recent work on HgBa_2Ca_{n-1} Cu_nO_{2n+2+\delta} (n = 1 and 3) are discussed.Comment: 4 pages, 4 figure

    Determining the Structure of Higgs Couplings at the LHC

    Get PDF
    Higgs boson production via weak boson fusion at the CERN Large Hadron Collider has the capability to determine the dominant CP nature of a Higgs boson, via the tensor structure of its coupling to weak bosons. This information is contained in the azimuthal angle distribution of the two outgoing forward tagging jets. The technique is independent of both the Higgs boson mass and the observed decay channel.Comment: 5 pages, 4 figures, version accepted for publication in PR

    Far-from-equilibrium quantum many-body dynamics

    Full text link
    The theory of real-time quantum many-body dynamics as put forward in Ref. [arXiv:0710.4627] is evaluated in detail. The formulation is based on a generating functional of correlation functions where the Keldysh contour is closed at a given time. Extending the Keldysh contour from this time to a later time leads to a dynamic flow of the generating functional. This flow describes the dynamics of the system and has an explicit causal structure. In the present work it is evaluated within a vertex expansion of the effective action leading to time evolution equations for Green functions. These equations are applicable for strongly interacting systems as well as for studying the late-time behaviour of nonequilibrium time evolution. For the specific case of a bosonic N-component phi^4 theory with contact interactions an s-channel truncation is identified to yield equations identical to those derived from the 2PI effective action in next-to-leading order of a 1/N expansion. The presented approach allows to directly obtain non-perturbative dynamic equations beyond the widely used 2PI approximations.Comment: 20 pp., 6 figs; submitted version with added references and typos corrected
    corecore