1,030 research outputs found

    Algebraic Aspects of Abelian Sandpile Models

    Get PDF
    The abelian sandpile models feature a finite abelian group G generated by the operators corresponding to particle addition at various sites. We study the canonical decomposition of G as a product of cyclic groups G = Z_{d_1} X Z_{d_2} X Z_{d_3}...X Z_{d_g}, where g is the least number of generators of G, and d_i is a multiple of d_{i+1}. The structure of G is determined in terms of toppling matrix. We construct scalar functions, linear in height variables of the pile, that are invariant toppling at any site. These invariants provide convenient coordinates to label the recurrent configurations of the sandpile. For an L X L square lattice, we show that g = L. In this case, we observe that the system has nontrivial symmetries coming from the action of the cyclotomic Galois group of the (2L+2)th roots of unity which operates on the set of eigenvalues of the toppling matrix. These eigenvalues are algebraic integers, whose product is the order |G|. With the help of this Galois group, we obtain an explicit factorizaration of |G|. We also use it to define other simpler, though under-complete, sets of toppling invariants.Comment: 39 pages, TIFR/TH/94-3

    Periodic One-Dimensional Hopping Model with one Mobile Directional Impurity

    Full text link
    Analytic solution is given in the steady state limit for the system of Master equations describing a random walk on one-dimensional periodic lattices with arbitrary hopping rates containing one mobile, directional impurity (defect bond). Due to the defect, translational invariance is broken, even if all other rates are identical. The structure of Master equations lead naturally to the introduction of a new entity, associated with the walker-impurity pair which we call the quasi-walker. The velocities and diffusion constants for both the random walker and impurity are given, being simply related to that of the quasi-particle through physically meaningful equations. Applications in driven diffusive systems are shown, and connections with the Duke-Rubinstein reptation models for gel electrophoresis are discussed.Comment: 31 LaTex pages, 5 Postscript figures included, to appear in Journal of Statistical Physic

    Domain wall QCD with physical quark masses

    Full text link
    We present results for several light hadronic quantities (fπf_\pi, fKf_K, BKB_K, mudm_{ud}, msm_s, t01/2t_0^{1/2}, w0w_0) obtained from simulations of 2+1 flavor domain wall lattice QCD with large physical volumes and nearly-physical pion masses at two lattice spacings. We perform a short, O(3)%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum `global fit' with a number of other ensembles with heavier pion masses. We use the physical values of mπm_\pi, mKm_K and mΩm_\Omega to determine the two quark masses and the scale - all other quantities are outputs from our simulations. We obtain results with sub-percent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including: fπf_\pi = 130.2(9) MeV; fKf_K = 155.5(8) MeV; the average up/down quark mass and strange quark mass in the MSˉ\bar {\rm MS} scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, BKB_K, in the RGI scheme, 0.750(15) and the MSˉ\bar{\rm MS} scheme at 3 GeV, 0.530(11).Comment: 131 pages, 30 figures. Updated to match published versio

    Motion of a driven tracer particle in a one-dimensional symmetric lattice gas

    Full text link
    We study the dynamics of a tracer particle subject to a constant driving force EE in a one-dimensional lattice gas of hard-core particles whose transition rates are symmetric. We show that the mean displacement of the driven tracer grows in time, tt, as αt \sqrt{\alpha t}, rather than the linear time dependence found for driven diffusion in the bath of non-interacting (ghost) particles. The prefactor α\alpha is determined implicitly, as the solution of a transcendental equation, for an arbitrary magnitude of the driving force and an arbitrary concentration of the lattice gas particles. In limiting cases the prefactor is obtained explicitly. Analytical predictions are seen to be in a good agreement with the results of numerical simulations.Comment: 21 pages, LaTeX, 4 Postscript fugures, to be published in Phys. Rev. E, (01Sep, 1996

    You turn me cold: evidence for temperature contagion

    Get PDF
    Introduction During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer. Methods Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand). Results Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy. Conclusions We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation

    PURA syndrome: clinical delineation and genotype-phenotype study in 32 individuals with review of published literature

    Get PDF
    Background De novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterized by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia. Objectives To delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations. Methods Diagnostic or research-based Exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals, and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotype-phenotype correlations by analysis of both recurrent mutations as well as mutation classes. Results We report mutations in PURA in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%), gastro-intestinal- (69%), ophthalmological- (51%), and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes. Conclusion We delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognizability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity
    corecore