3,955 research outputs found
Scalable designs for quantum computing with rare-earth-ion-doped crystals
Due to inhomogeneous broadening, the absorption lines of rare-earth-ion
dopands in crystals are many order of magnitudes wider than the homogeneous
linewidths. Several ways have been proposed to use ions with different
inhomogeneous shifts as qubit registers, and to perform gate operations between
such registers by means of the static dipole coupling between the ions.
In this paper we show that in order to implement high-fidelity quantum gate
operations by means of the static dipole interaction, we require the
participating ions to be strongly coupled, and that the density of such
strongly coupled registers in general scales poorly with register size.
Although this is critical to previous proposals which rely on a high density of
functional registers, we describe architectures and preparation strategies that
will allow scalable quantum computers based on rare-earth-ion doped crystals.Comment: Submitted to Phys. Rev.
Communication and optimal hierarchical networks
We study a general and simple model for communication processes. In the
model, agents in a network (in particular, an organization) interchange
information packets following simple rules that take into account the limited
capability of the agents to deal with packets and the cost associated to the
existence of open communication channels. Due to the limitation in the
capability, the network collapses under certain conditions. We focus on when
the collapse occurs for hierarchical networks and also on the influence of the
flatness or steepness of the structure. We find that the need for hierarchy is
related to the existence of costly connections.Comment: 7 pages, 2 figures. NATO ARW on Econophysic
A biophysical model of prokaryotic diversity in geothermal hot springs
Recent field investigations of photosynthetic bacteria living in geothermal
hot spring environments have revealed surprisingly complex ecosystems, with an
unexpected level of genetic diversity. One case of particular interest involves
the distribution along hot spring thermal gradients of genetically distinct
bacterial strains that differ in their preferred temperatures for reproduction
and photosynthesis. In such systems, a single variable, temperature, defines
the relevant environmental variation. In spite of this, each region along the
thermal gradient exhibits multiple strains of photosynthetic bacteria adapted
to several distinct thermal optima, rather than the expected single thermal
strain adapted to the local environmental temperature. Here we analyze
microbiology data from several ecological studies to show that the thermal
distribution field data exhibit several universal features independent of
location and specific bacterial strain. These include the distribution of
optimal temperatures of different thermal strains and the functional dependence
of the net population density on temperature. Further, we present a simple
population dynamics model of these systems that is highly constrained by
biophysical data and by physical features of the environment. This model can
explain in detail the observed diversity of different strains of the
photosynthetic bacteria. It also reproduces the observed thermal population
distributions, as well as certain features of population dynamics observed in
laboratory studies of the same organisms
The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority
We perform equilibrium parallel-tempering simulations of the 3D Ising
Edwards-Anderson spin glass in a field. A traditional analysis shows no signs
of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour
of the model: Averages over all the data only describe the behaviour of a small
fraction of it. Therefore we develop a new approach to study the equilibrium
behaviour of the system, by classifying the measurements as a function of a
conditioning variate. We propose a finite-size scaling analysis based on the
probability distribution function of the conditioning variate, which may
accelerate the convergence to the thermodynamic limit. In this way, we find a
non-trivial spectrum of behaviours, where a part of the measurements behaves as
the average, while the majority of them shows signs of scale invariance. As a
result, we can estimate the temperature interval where the phase transition in
a field ought to lie, if it exists. Although this would-be critical regime is
unreachable with present resources, the numerical challenge is finally well
posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results
unchanged
Matching microscopic and macroscopic responses in glasses
We first reproduce on the Janus and Janus II computers a milestone experiment
that measures the spin-glass coherence length through the lowering of
free-energy barriers induced by the Zeeman effect. Secondly we determine the
scaling behavior that allows a quantitative analysis of a new experiment
reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett.
118, 157203 (2017)]. The value of the coherence length estimated through the
analysis of microscopic correlation functions turns out to be quantitatively
consistent with its measurement through macroscopic response functions.
Further, non-linear susceptibilities, recently measured in glass-forming
liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure
The Mpemba effect in spin glasses is a persistent memory effect
The Mpemba effect occurs when a hot system cools faster than an initially
colder one, when both are refrigerated in the same thermal reservoir. Using the
custom built supercomputer Janus II, we study the Mpemba effect in spin glasses
and show that it is a non-equilibrium process, governed by the coherence length
\xi of the system. The effect occurs when the bath temperature lies in the
glassy phase, but it is not necessary for the thermal protocol to cross the
critical temperature. In fact, the Mpemba effect follows from a strong
relationship between the internal energy and \xi that turns out to be a
sure-tell sign of being in the glassy phase. Thus, the Mpemba effect presents
itself as an intriguing new avenue for the experimental study of the coherence
length in supercooled liquids and other glass formers.Comment: Version accepted for publication in PNAS. 6 pages, 7 figure
Impact of perioperative infarcts after cardiac surgery
Background and Purpose: Brain injury after cardiac surgery is a serious concern for patients and their families. The purpose of this study was to use 3-T fluid attenuated inversion recovery MRI to characterize new and preexisting cerebral ischemic lesions in patients undergoing cardiac surgery and to test whether the accumulation of new ischemic lesions adversely affects cognition.
Methods: Digital comparison of before and after fluid attenuated inversion recovery MRI images was performed for 77 cardiac surgery patients. The burden of preexisting versus new ischemic lesions was quantified and compared with the results of baseline and postoperative neuropsychological testing.
Results: After surgery, new lesions were identified in 31% of patients, averaging 0.5 lesions per patient (67 mm3 [0.004%] of brain tissue). Patients with preexisting lesions were 10× more likely to receive new lesions after surgery than patients without preexisting lesions. Preexisting ischemic lesions were observed in 64% of patients, averaging 19.4 lesions (1542 mm3 [0.1%] of brain tissue). New lesions in the left hemisphere were significantly smaller and more numerous (29 lesions; median volume, 44 mm3; volume range, 5–404 mm3) than those on the right (10 lesions; median volume, 128 mm3; volume range, 13–1383 mm3), which is consistent with a cardioembolic source of particulate emboli. Overall, the incidence of postoperative cognitive decline was 46% and was independent of whether new lesions were present.
Conclusions: New lesions after cardiac surgery added a small (≈4%) contribution to the burden of preexisting cerebrovascular disease and did not seem to affect cognitive function
Normal cognition in transgenic BRI2-Aβ mice
BACKGROUND: Recent research in Alzheimer’s disease (AD) field has been focused on the potential role of the amyloid-β protein that is derived from the transmembrane amyloid precursor protein (APP) in directly mediating cognitive impairment in AD. Transgenic mouse models overexpressing APP develop robust AD-like amyloid pathology in the brain and show various levels of cognitive decline. In the present study, we examined the cognition of the BRI2-Aβ transgenic mouse model in which secreted extracellular Aβ1-40, Aβ1-42 or both Aβ1-40/Aβ1-42 peptides are generated from the BRI-Aβ fusion proteins encoded by the transgenes. BRI2-Aβ mice produce high levels of Aβ peptides and BRI2-Aβ1-42 mice develop amyloid pathology that is similar to the pathology observed in mutant human APP transgenic models. RESULTS: Using established behavioral tests that reveal deficits in APP transgenic models, BRI2-Aβ1-42 mice showed completely intact cognitive performance at ages both pre and post amyloid plaque formation. BRI2-Aβ mice producing Aβ1-40 or both peptides were also cognitively intact. CONCLUSIONS: These data indicate that high levels of Aβ1-40 or Aβ1-42, or both produced in the absence of APP overexpression do not reproduce memory deficits observed in APP transgenic mouse models. This outcome is supportive of recent data suggesting that APP processing derivatives or the overexpression of full length APP may contribute to cognitive decline in APP transgenic mouse models. Alternatively, Aβ aggregates may impact cognition by a mechanism that is not fully recapitulated in these BRI2-Aβ mouse models
Scaling and super-universality in the coarsening dynamics of the 3d random field Ising model
We study the coarsening dynamics of the three-dimensional random field Ising
model using Monte Carlo numerical simulations. We test the dynamic scaling and
super-scaling properties of global and local two-time observables. We treat in
parallel the three-dimensional Edward-Anderson spin-glass and we recall results
on Lennard-Jones mixtures and colloidal suspensions to highlight the common and
different out of equilibrium properties of these glassy systems.Comment: 18 pages, 21 figure
- …
