4,187 research outputs found
The Search for Million Degree Gas Through The NVII Hyperfine Line
Gas in the million degree range occurs in a variety of astronomical
environments, and it may be the main component of the elusive missing baryons
at low redshift. The NVII ion is found in this material and it has a hyperfine
spin-flip transition with a rest frequency of 53.042 GHz, which can be observed
for z > 0.1, when it is shifted into a suitably transparent radio band. We used
the 42-48 GHz spectrometer on the Green Bank Telescope to search for both
emission and absorption from this NVII transmission. For absorption studies,
3C273, 3C 279, 3C 345, and 4C+39.25 were observed but no feature were seen
above the 5 sigma level. For emission line studies, we observed Abell 1835,
Abell 2390 and the star-forming galaxy PKS 1345+12, but no features were seen
exceeding 5 sigma. We examine whether the strongest emission feature, in Abell
2390 (3.7 sigma), and the strongest absorption feature, toward 4C+39.25 (3.8
sigma), might be expected from theoretical models. The emission feature would
require ~1E10 Msolar of 1E6 K gas, which is inconsistent with X-ray limits for
the O VII Kalpha line, so it is unlikely to be real. The NVII absorption
feature requires a NVII column of 6E16 cm^-2, higher than model predictions by
at least an order of magnitude, which makes it inconsistent with model
expectations. The individual observations were less than 1 hr in length, so for
lengthy observations, we show that NVII absorption line observations can begin
to be useful in in the search for hot intergalactic gas.Comment: 27 total pages; 16 figures; Accepted for publication in The
Astrophysical Journa
Recommended from our members
Gambelia copeii
Number of Pages: 8Integrative BiologyGeological Science
Observation of narrow fluorescence from doubly driven four-level atoms at room temperature
Unusually narrow fluorescence peaks are seen from Rubidium-85 atoms under the
action of two driving laser fields that are in a three dimensional molasses
configuration. One of the lasers is held at a fixed detuning from the "cooling"
transition, while the other is scanned across the "repumping" transitions. The
fluorescence peaks are split into symmetric pairs, with the seperation within a
pair increasing with the detuning of the cooling laser. For large detunings
additional small peaks are seen. A simple model is proposed to explain these
experimental observations.Comment: 8 pages, 4 figures, needs epl.cl
Image patch analysis and clustering of sunspots: a dimensionality reduction approach
Sunspots, as seen in white light or continuum images, are associated with
regions of high magnetic activity on the Sun, visible on magnetogram images.
Their complexity is correlated with explosive solar activity and so classifying
these active regions is useful for predicting future solar activity. Current
classification of sunspot groups is visually based and suffers from bias.
Supervised learning methods can reduce human bias but fail to optimally
capitalize on the information present in sunspot images. This paper uses two
image modalities (continuum and magnetogram) to characterize the spatial and
modal interactions of sunspot and magnetic active region images and presents a
new approach to cluster the images. Specifically, in the framework of image
patch analysis, we estimate the number of intrinsic parameters required to
describe the spatial and modal dependencies, the correlation between the two
modalities and the corresponding spatial patterns, and examine the phenomena at
different scales within the images. To do this, we use linear and nonlinear
intrinsic dimension estimators, canonical correlation analysis, and
multiresolution analysis of intrinsic dimension.Comment: 5 pages, 7 figures, accepted to ICIP 201
Effect of early initation of Eculizumab in patients with aHUS on renal outcomes: a pooled analysis
Chandra Observations of Low Mass X-ray Binaries and Diffuse Gas in the Early-Type Galaxies NGC 4365 and NGC 4382 (M85)
(Abridged) We used the Chandra X-ray Observatory ACIS S3 to image the X-ray
faint elliptical galaxy NGC 4365 and lenticular galaxy NGC 4382. The
observations resolve much of the X-ray emission into 99 and 58 sources,
respectively, most of which are low-mass X-ray binaries (LMXBs) associated with
each of the galaxies. We identify 18 out of the 37 X-ray sources in a central
field in NGC 4365 with globular clusters. The luminosity functions of the
resolved sources for both galaxies are best fit with cutoff power-laws whose
cutoff luminosity is ergs s. These
luminosities are much larger than those previously measured for similar
galaxies; we do not find evidence for a break in the luminosity function at the
Eddington luminosity of a 1.4 neutron star. The spatial distributions
of the resolved sources for both galaxies are broader than the distribution of
optical stars. In both galaxies, a hard power-law model fits the summed
spectrum of all of the sources. The unresolved emission is best fit by the sum
of a soft mekal model representing emission from diffuse gas, and a hard
power-law, presumed to be from unresolved LMXBs. A standard beta model fits the
radial distribution of the diffuse gas in both galaxies. In the elliptical NGC
4365, the best-fit core radius is very small, while the S0 galaxy NGC 4382 has
a larger core radius. This may indicate that the gas in NGC 4382 is rotating
significantly.Comment: Astrophysical Journal, accepted: 38 pages with 20 embedded reduced
resolution Postscript figure
Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis
The flare-productivity of an active region is observed to be related to its
spatial complexity. Mount Wilson or McIntosh sunspot classifications measure
such complexity but in a categorical way, and may therefore not use all the
information present in the observations. Moreover, such categorical schemes
hinder a systematic study of an active region's evolution for example. We
propose fine-scale quantitative descriptors for an active region's complexity
and relate them to the Mount Wilson classification. We analyze the local
correlation structure within continuum and magnetogram data, as well as the
cross-correlation between continuum and magnetogram data. We compute the
intrinsic dimension, partial correlation, and canonical correlation analysis
(CCA) of image patches of continuum and magnetogram active region images taken
from the SOHO-MDI instrument. We use masks of sunspots derived from continuum
as well as larger masks of magnetic active regions derived from the magnetogram
to analyze separately the core part of an active region from its surrounding
part. We find the relationship between complexity of an active region as
measured by Mount Wilson and the intrinsic dimension of its image patches.
Partial correlation patterns exhibit approximately a third-order Markov
structure. CCA reveals different patterns of correlation between continuum and
magnetogram within the sunspots and in the region surrounding the sunspots.
These results also pave the way for patch-based dictionary learning with a view
towards automatic clustering of active regions.Comment: Accepted for publication in the Journal of Space Weather and Space
Climate (SWSC). 23 pages, 11 figure
- …
