1,504 research outputs found
Design and development of a low temperature, inductance based high frequency ac susceptometer
We report on the development of an induction based low temperature high
frequency ac susceptometer capable of measuring at frequencies up to 3.5 MHz
and at temperatures between 2 K and 300 K. Careful balancing of the detection
coils and calibration have allowed a sample magnetic moment resolution of
at 1 MHz. We will discuss the design and
characterization of the susceptometer, and explain the calibration process. We
also include some example measurements on the spin ice material CdErS
and iron oxide based nanoparticles to illustrate functionality
Evaluation of a Commercial Enzyme Linked Immunosorbent Assay (ELISA) for the Determination of the Neurotoxin BMAA in Surface Waters
The neurotoxin ß-N-methylamino-L-alanine (BMAA) is suspected to play a role in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Because BMAA seems to be produced by cyanobacteria, surface waters are screened for BMAA. However, reliable analysis of BMAA requires specialized and expensive equipment. In 2012, a commercial enzyme-linked immunosorbent assay (ELISA) for determination of BMAA in surface waters was released. This kit could enable fast and relatively cheap screening of surface waters for BMAA. The objective of this study was to determine whether the BMAA ELISA kit was suitable for the determination of BMAA concentrations in surface waters. We hypothesised that the recovery of spiked samples was close to 100% and that the results of unspiked sample analysis were comparable between ELISA and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. However, we found that recovery was higher than 100% in most spiked samples, highest determined recovery was over 400%. Furthermore, the ELISA gave a positive signal for nearly each tested sample while no BMAA could be detected by LC-MS/MS. We therefore conclude that in its current state, the kit is not suitable for screening surface waters for BMAA
Phase Transitions on Nonamenable Graphs
We survey known results about phase transitions in various models of
statistical physics when the underlying space is a nonamenable graph. Most
attention is devoted to transitive graphs and trees
Strict inequalities of critical values in continuum percolation
We consider the supercritical finite-range random connection model where the
points of a homogeneous planar Poisson process are connected with
probability for a given . Performing percolation on the resulting
graph, we show that the critical probabilities for site and bond percolation
satisfy the strict inequality . We also show
that reducing the connection function strictly increases the critical
Poisson intensity. Finally, we deduce that performing a spreading
transformation on (thereby allowing connections over greater distances but
with lower probabilities, leaving average degrees unchanged) {\em strictly}
reduces the critical Poisson intensity. This is of practical relevance,
indicating that in many real networks it is in principle possible to exploit
the presence of spread-out, long range connections, to achieve connectivity at
a strictly lower density value.Comment: 38 pages, 8 figure
First observations of high-temperature submarine hydrothermal vents and massive anhydrite deposits off the north coast of Iceland
High-temperature (250°C) hydrothermal vents and massive anhydrite deposits have been found in a shallow water, sediment-filled graben near 66°36′N in the Tjornes Fracture Zone north of Iceland. The site is located about 30 km offshore, near the small island of Grimsey. The main vent field occurs at a depth of 400 m and consists of about 20 large-diameter (up to 10 m) mounds and 1–3 m chimneys and spires of anhydrite and talc. A north–south alignment of the mounds over a 1-km strike length of the valley floor suggests that their distribution is controlled by a buried fault. Widespread shimmering water and extensive white patches of anhydrite in the sediment between the mounds indicates that the entire 1-km2 area occupied by the vents is thermally active. A 2-man research submersible JAGO was used to map the area and to sample vent waters, gases, and chimneys. Actively boiling hydrothermal vents occur on most of the mounds, and extensive two-phase venting indicates that the field is underlain by a large boiling zone (200×300 m). The presence of boiling fluids in shallow aquifers beneath the deposits was confirmed by sediment coring. The highest-temperature pore fluids were encountered in talc- and anhydrite-rich sedimentary layers that occur up to 7 m below the mounds. Baked muds underlie the talc and anhydrite layers, and pyrite is common in stockwork-like fractures and veins in the hydrothermally altered sediments. However, massive sulfides (pyrite–marcasite crusts) were found in only one relict mound. Subseafloor boiling has likely affected the metal-carrying capacity of the hydrothermal fluids, and deposition of sulfides may be occurring at greater depth. Although the mounds and chimneys at Grimsey resemble other deposits at sedimented ridges (e.g. Middle Valley, Escanaba Trough, Guaymas Basin), the shallow water setting and extensive boiling of the hydrothermal fluids represent a distinctive new type of seafloor hydrothermal system
Retinopathy in old persons with and without diabetes mellitus: the Age, Gene/Environment Susceptibility--Reykjavik Study (AGES-R).
To access full text version of this article. Please click on the hyperlink "View/open" at the bottom of this pageWe aimed to describe the prevalence of retinopathy in an aged cohort of Icelanders with and without diabetes mellitus. The study population consisted of 4,994 persons aged ≥ 67 years, who participated in the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-R). Type 2 diabetes mellitus was defined as HbA(1c) ≥ 6.5% (>48 mmol/mol). Retinopathy was assessed by grading fundus photographs using the modified Airlie House adaptation of the Early Treatment Diabetic Retinopathy Study protocol. Associations between retinopathy and risk factors were estimated using odds ratios obtained from multivariate analyses. The overall prevalence of retinopathy in AGES-R was 12.4%. Diabetes mellitus was present in 516 persons (10.3%), for 512 of whom gradable fundus photos were available, including 138 persons (27.0%, 95% CI 23.2, 31.0) with any retinopathy. Five persons (1.0%, 95% CI 0.3, 2.3) had proliferative retinopathy. Clinically significant macular oedema was present in five persons (1.0%, 95% CI 0.3, 2.3). Independent risk factors for retinopathy in diabetic patients in a multivariate model included HbA(1c), insulin use and use of oral hypoglycaemic agents, the last two being indicators of longer disease duration. In 4478 participants without diabetes mellitus, gradable fundus photos were available for 4,453 participants, with retinopathy present in 476 (10.7%, 95% CI 9.8, 11.6) and clinically significant macular oedema in three persons. Independent risk factors included increasing age and microalbuminuria. Over three-quarters (78%) of retinopathy cases were found in persons without diabetes and a strong association between microalbuminuria and non-diabetic retinopathy was found. These results may have implications for patient management of the aged.NIH N01-AG-12100 NIH/NIA,
National Eye Institute (NEI) of the NIH
ZIAEY000401,
Hjartavernd (the Icelandic Heart Association),
Althingi (the Icelandic Parliament),
University of Iceland
RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis
Background
Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth.
Results
It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms.
Conclusion
Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans
Fragility of the Free-Energy Landscape of a Directed Polymer in Random Media
We examine the sensitiveness of the free-energy landscape of a directed
polymer in random media with respect to various kinds of infinitesimally weak
perturbation including the intriguing case of temperature-chaos. To this end,
we combine the replica Bethe ansatz approach outlined in cond-mat/0112384, the
mapping to a modified Sinai model and numerically exact calculations by the
transfer-matrix method. Our results imply that for all the perturbations under
study there is a slow crossover from a weakly perturbed regime where rare
events take place to a strongly perturbed regime at larger length scales beyond
the so called overlap length where typical events take place leading to chaos,
i.e. a complete reshuffling of the free-energy landscape. Within the replica
space, the evidence for chaos is found in the factorization of the replicated
partition function induced by infinitesimal perturbations. This is the reflex
of explicit replica symmetry breaking.Comment: 29 pages, Revtex4, ps figure
- …
