16,616 research outputs found
Field-induced confinement in (TMTSF)2ClO4 under accurately aligned magnetic fields
We present transport measurements along the least conducting c direction of
the organic superconductor (TMTSF)2ClO4, performed under an accurately aligned
magnetic field in the low temperature regime. The experimental results reveal a
two-dimensional confinement of the carriers in the (a,b) planes which is
governed by the magnetic field component along the b' direction. This 2-D
confinement is accompanied by a metal-insulator transition for the c axis
resistivity. These data are supported by a quantum mechanical calculation of
the transverse transport taking into account in self consistent treatment the
effect of the field on the interplane Green function and on the intraplane
scattering time
Revealing the Exciton Fine Structure in PbSe Nanocrystal Quantum Dots
We measure the photoluminescence (PL) lifetime, , of excitons in
colloidal PbSe nanocrystals (NCs) at low temperatures to 270~mK and in high
magnetic fields to 15~T. For all NCs (1.3-2.3~nm radii), increases
sharply below 10~K but saturates by 500~mK. In contrast to the usual picture of
well-separated ``bright" and ``dark" exciton states (found, e.g., in CdSe NCs),
these dynamics fit remarkably well to a system having two exciton states with
comparable - but small - oscillator strengths that are separated by only
300-900 eV. Importantly, magnetic fields reduce below 10~K,
consistent with field-induced mixing between the two states. Magnetic circular
dichroism studies reveal exciton g-factors from 2-5, and magneto-PL shows
10\% circularly polarized emission.Comment: To appear in Physical Review Letter
Dynamical influence of vortex-antivortex pairs in magnetic vortex oscillators
We study the magnetization dynamics in a nanocontact magnetic vortex
oscillators as function of temperature. Low temperature experiments reveal that
the dynamics at low and high currents differ qualitatively. At low currents, we
excite a temperature independent standard oscillation mode, consisting in the
gyrotropic motion of a free layer vortex about the nanocontact. Above a
critical current, a sudden jump of the frequency is observed, concomitant with
a substantial increase of the frequency versus current slope factor. Using
micromagnetic simulation and analytical modeling, we associate this new regime
to the creation of a vortex-antivortex pair in the pinned layer of the spin
valve. The vortex-antivortex distance depends on the Oersted field which favors
a separation, and on the exchange bias field, which favors pair merging. The
pair in the pinned layer provides an additional spin torque altering the
dynamics of the free layer vortex, which can be quantitatively accounted for by
an analytical model
Stochastic theory of spin-transfer oscillator linewidths
We present a stochastic theory of linewidths for magnetization oscillations
in spin-valve structures driven by spin-polarized currents. Starting from a
nonlinear oscillator model derived from spin-wave theory, we derive Langevin
equations for amplitude and phase fluctuations due to the presence of thermal
noise. We find that the spectral linewidths are inversely proportional to the
spin-wave intensities with a lower bound that is determined purely by
modulations in the oscillation frequencies. Reasonable quantitative agreement
with recent experimental results from spin-valve nanopillars is demonstrated.Comment: Submitted to Physical Review
Synthesis and bioactivity of a conjugate composed of green tea catechins and hyaluronic acid
(-)-Epigallocatechin-3-gallate (EGCG) is a green tea polyphenol that has several biological activities, including anti-cancer activity and anti-inflammation. Hyaluronic acid (HA) is a naturally-occurring polysaccharide that is widely used as a biomaterial for drug delivery and tissue engineering due to its viscoelastic, biocompatible and biodegradable properties. By conjugating HA with EGCG, the resulting HA-EGCG conjugate is expected to exhibit not only the inherent properties of HA but also the bioactivities of EGCG. Toward this end, we report the synthesis of an amine-functionalized EGCG as an intermediate compound for conjugation to HA. EGCG was reacted with 2,2-diethoxyethylamine (DA) under acidic conditions, forming ethylamine-bridged EGCG dimers. The EGCG dimers were composed of four isomers, which were characterized by HPLC, high-resolution mass spectrometry and NMR spectroscopy. The amine-functionalized EGCG dimers were conjugated to hyaluronic acid (HA) through the formation of amide bonds. HA-EGCG conjugates demonstrated several bioactivities which were not present in unmodified HA, including resistance to hyaluronidase-mediated degradation, inhibition of cell growth and scavenging of radicals. The potential applications of HA-EGCG conjugates are discussed
Quantitative Kinetic Energy Estimated from Disdrometer Signal
The kinetic energy of the rain drops was predicted in a relation between the rain rate and rain quantity, derived directly from the rain drop size distribution (DSD), which had been measured by a disdrometer located in the eastern state of Alagoas-Brazil. The equation in the form of exponential form suppressed the effects of large drops at low rainfall intensity observed at the beginning and end of the rainfall. The kinetic energy of the raindrop was underestimated in almost rain intensity ranges and was considered acceptable by the performance indicators such as coefficient of determination, average absolute error, percent relative error, mean absolute error, root mean square error, Willmott's concordance index and confidence index
Simulations of black hole air showers in cosmic ray detectors
We present a comprehensive study of TeV black hole events in Earth's
atmosphere originated by cosmic rays of very high energy. An advanced fortran
Monte Carlo code is developed and used to simulate black hole extensive air
showers from ultrahigh-energy neutrino-nucleon interactions. We investigate the
characteristics of these events, compare the black hole air showers to standard
model air showers, and test different theoretical and phenomenological models
of black hole formation and evolution. The main features of black hole air
showers are found to be independent of the model considered. No significant
differences between models are likely to be observed at fluorescence telescopes
and/or ground arrays. We also discuss the tau ``double bang'' signature in
black hole air showers. We find that the energy deposited in the second bang is
too small to produce a detectable peak. Our results show that the theory of
TeV-scale black holes in ultrahigh-energy cosmic rays leads to robust
predictions, but the fine prints of new physics are hardly to be investigated
through atmospheric black hole events in the near future.Comment: 18 pages, 9 figure
- …
