4,400 research outputs found
Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century
The development of northern high-latitude peatlands played an important role in the carbon (C) balance of the land biosphere since the Last Glacial Maximum (LGM). At present, carbon storage in northern peatlands is substantial and estimated to be 500 ± 100 Pg C (1 Pg C = 1015 g C). Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0). The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer) and catotelm (deep anoxic layer), hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between −20 and +50 g C m−2 yr−1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365–550 Pg C since the LGM, of which 175–272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 35–50 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways
Structure of the Algebra of Effective Observables in Quantum Mechanics
A subclass of dynamical semigroups induced by the interaction of a quantum
system with an environment is introduced. Such semigroups lead to the selection
of a stable subalgebra of effective observables. The structure of this
subalgebra is completely determined
Disc formation in turbulent cloud cores: Circumventing the magnetic braking catastrophe
We present collapse simulations of strongly magnetised, 100 M_sun, turbulent
cloud cores. Around the protostars formed during the collapse Keplerian discs
with typical sizes of up to 100 AU build up in contrast to previous simulations
neglecting turbulence. Analysing the condensations in which the discs form, we
show that the magnetic flux loss is not sufficient to explain the build-up of
Keplerian discs. The average magnetic field is strongly inclined to the disc
which might reduce the magnetic braking efficiency. However, the main reason
for the reduced magnetic braking efficiency is the highly disordered magnetic
field in the surroundings of the discs. Furthermore, due to the lack of a
coherently rotating structure in the turbulent environment of the disc no
toroidal magnetic field necessary for angular momentum extraction can build up.
Simultaneously the angular momentum inflow remains high due to local shear
flows created by the turbulent motions. We suggest that the "magnetic braking
catastrophe" is an artefact of the idealised non-turbulent initial conditions
and that turbulence provides a natural mechanism to circumvent this problem.Comment: 4 pages, 2 figures. To appear in the proceedings of 'The Labyrinth of
Star Formation' (18-22 June 2012, Chania, Greece), published by Springe
Reduced coherence in double-slit diffraction of neutrons
In diffraction experiments with particle beams, several effects lead to a
fringe visibility reduction of the interference pattern. We theoretically
describe the intensity one can measure in a double-slit setup and compare the
results with the experimental data obtained with cold neutrons. Our conclusion
is that for cold neutrons the fringe visibility reduction is due not to
decoherence, but to initial incoherence.Comment: 4 pages LaTeX, 2 figure
Shot Noise of Spin-Decohering Transport in Spin-Orbit Coupled Nanostructures
We generalize the scattering theory of quantum shot noise to include the full
spin-density matrix of electrons injected from a spin-filtering or
ferromagnetic electrode into a quantum-coherent nanostructure governed by
various spin-dependent interactions. This formalism yields the spin-resolved
shot noise power for different experimental measurement setups--with
ferromagnetic source and ferromagnetic or normal drain electrodes--whose
evaluation for the diffusive multichannel quantum wires with the Rashba (SO)
spin-orbit coupling shows how spin decoherence and dephasing lead to
substantial enhancement of charge current fluctuations (characterized by Fano
factors ). However, these processes and the corresponding shot noise
increase are suppressed in narrow wires, so that charge transport experiments
measuring the Fano factor in a
ferromagnet/SO-coupled-wire/paramagnet setup also quantify the degree of
phase-coherence of transported spin--we predict a one-to-one correspondence
between the magnitude of the spin polarization vector and .Comment: 8 pages, 3 figure; enhanced with 2 new figure
Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores
Stars and more particularly massive stars, have a drastic impact on galaxy
evolution. Yet the conditions in which they form and collapse are still not
fully understood. In particular, the influence of the magnetic field on the
collapse of massive clumps is relatively unexplored, it is thus of great
relevance in the context of the formation of massive stars to investigate its
impact. We perform high resolution, MHD simulations of the collapse of hundred
solar masses, turbulent and magnetized clouds, using the adaptive mesh
refinement code RAMSES. We compute various quantities such as mass
distribution, magnetic field and angular momentum within the collapsing core
and study the episodic outflows and the fragmentation that occurs during the
collapse. The magnetic field has a drastic impact on the cloud evolution. We
find that magnetic braking is able to substantially reduce the angular momentum
in the inner part of the collapsing cloud. Fast and episodic outflows are being
launched with typical velocities of the order of 3-5 km s although the
highest velocities can be as high as 30-40 km s. The fragmentation in
several objects, is reduced in substantially magnetized clouds with respect to
hydrodynamical ones by a factor of the order of 1.5-2. We conclude that
magnetic fields have a significant impact on the evolution of massive clumps.
In combination with radiation, magnetic fields largely determine the outcome of
massive core collapse. We stress that numerical convergence of MHD collapse is
a challenging issue. In particular, numerical diffusion appears to be important
at high density therefore possibly leading to an over-estimation of the number
of fragments.Comment: accepted for publication in A&
IDENTIFICATION AND PLANT INTERACTION OF A PHYLLOBACTERIUM SP, A PREDOMINANT RHIZOBACTERIUM OF YOUNG SUGAR-BEET PLANTS
The second most abundant bacterium on the root surface of young sugar beet plants was identified as a Phyllobacterium sp. (Rhizobiaceae) based on a comparison of the results of 39 conventional identification tests, 167 API tests, 30 antibiotic susceptibility tests, and sodium dodecyl sulfate-polyacrylamide gel electrophoretic fingerprints of total cellular proteins with type strains of Phyllobacterium myrsinacearum and Phyllobacterium rubiacearum. It was found on 198 of 1,100 investigated plants between the 2nd and 10th leaf stage on three different fields in Belgium and one field in Spain. Densities ranged from 2 × 10(4) to 2 × 10(8) CFU/g of root. Five isolates exerted a broad-spectrum in vitro antifungal activity. DNA-DNA hybridizations showed that Phyllobacterium sp. does not contain DNA sequences that are homologous with the attachment genes chvA, chvB, the transferred-DNA (T-DNA) hormone genes iaaH and ipt from Agrobacterium tumefaciens, iaaM from A. tumefaciens and Pseudomonas savastanoi, or the nitrogenase genes nifHDK from Klebsiella pneumoniae. Phyllobacterium sp. produces indolylacetic acid in in vitro cultures and induces auxinlike effects when cocultivated with callus tissue of tobacco. When Phyllobacterium sp. was transformed with a Ti plasmid derivative, it gained the capacity to induce tumors on Kalanchoe daigremontiana. The potential role of Phyllobacterium sp. in this newly recognized niche is discussed
Localization of Relative-Position of Two Atoms Induced by Spontaneous Emission
We revisit the back-action of emitted photons on the motion of the relative
position of two cold atoms. We show that photon recoil resulting from the
spontaneous emission can induce the localization of the relative position of
the two atoms through the entanglement between the spatial motion of individual
atoms and their emitted photons. The result provides a more realistic model for
the analysis of the environment-induced localization of a macroscopic object.Comment: 8 pages and 4 figure
Sum Rules for the Dirac Spectrum of the Schwinger Model
The inverse eigenvalues of the Dirac operator in the Schwinger model satisfy
the same Leutwyler-Smilga sum rules as in the case of QCD with one flavor. In
this paper we give a microscopic derivation of these sum rules in the sector of
arbitrary topological charge. We show that the sum rules can be obtained from
the clustering property of the scalar correlation functions. This argument also
holds for other theories with a mass gap and broken chiral symmetry such as QCD
with one flavor. For QCD with several flavors a modified clustering property is
derived from the low energy chiral Lagrangian. We also obtain sum rules for a
fixed external gauge field and show their relation with the bosonized version
of the Schwinger model. In the sector of topological charge the sum rules
are consistent with a shift of the Dirac spectrum away from zero by
average level spacings. This shift is also required to obtain a nonzero chiral
condensate in the massless limit. Finally, we discuss the Dirac spectrum for a
closely related two-dimensional theory for which the gauge field action is
quadratic in the the gauge fields. This theory of so called random Dirac
fermions has been discussed extensively in the context of the quantum Hall
effect and d-wave super-conductors.Comment: 41 pages, Late
Detection of amplified DNA sequences by reverse chromosome painting using genomic tumor DNA as probe
A modification of reverse chromosome painting was carried out using genomic DNA from tumor cells as a complex probe for chromosomal in situ suppression hybridization to normal metaphase chromsome spreads. Amplified DNA sequences contained in such probes showed specific signals, revealing the normal chromosome positions from which these sequences were derived. As a model system, genomic DNAs were analyzed from three tumor cell lines with amplification units including the proto-oncogene c-myc. The smallest amplification unit was about 90 kb and was present in 16–24 copies; the largest unit was bigger than 600 kb and was present in 16–32 copies. Specific signals that co-localized with a differently labeled c-myc probe on chromosome band 8q24 were obtained with genomic DNA from each cell line. In further experiments, genomic DNA derived from primary tumor material was used in the case of a male patient with glioblastoma multiforme (GBM). Southern blot analysis using an epidermal growth factor receptor gene (EGFR) probe that maps to 7p13 indicated the amplification of sequences from this gene. Using reverse chromosome painting, signals were found both on band 7p13 and bands 12q13–q15. Notably, the signal on 12q13–q15 was consistently stronger. The weaker 7p13 signal showed co-localization with the major signal of the differently labeled EGFR probe. A minor signal of this probe was seen on 12q13, suggesting cross-hybridization to ERB3 sequences homologous to EGFR. The results indicate co-amplification of sequences from bands 12q13–q15, in addition to sequences from band 7p13. Several oncogenes map to 12q13–q15 providing candidate genes for a tumor-associated proto-oncogene amplification. Although the nature of the amplified sequences needs to be clarified, this experiment demonstrates the potential of reverse chromosome painting with genomic tumor DNA for rapidly mapping the normal chromosomal localization of the DNA from which the amplified sequences were derived. In addition, a weaker staining of chromosomes 10 and X was consistently observed indicating that these chromosomes were present in only one copy in the GBM genome. This rapid approach can be used to analyze cases where no metaphase spreads from the tumor material are available. It does not require any preknowledge of amplified sequences and can be applied to screen large numbers of tumors
- …
