2,163 research outputs found
National Policies for Local Urban Sustainability: A New Governance Approach?
Cities have become a focal point for efforts to transition towards a more sustainable, low-carbon society, with many municipal agencies championing ‘eco city’ initiatives of one kind or another. And yet, national policy initiatives frequently play an important – if sometimes overlooked – role, too. This chapters provides comparative perspectives on four recent national sustainable city programmes from France, India, Japan, and the United Kingdom. The analysis reveals two key insights: first, national policy is found to exercise a strong shaping role in what sustainable development for future cities is understood to be, which helps explain the considerable differences in priorities and approaches across countries. Second, beyond articulating strategic priorities, national policy may exercise a ‘soft’ governance function by incentivising and facilitating wider, voluntary governance networks in the effort to implement sustainable city projects locally. This innovative role, however, depends on the ability of national policy to produce resonance among societal actors and on its effective interaction with formal planning processes
Direct Observation of Condon Domains in Silver by Hall Probes
Using a set of micro Hall probes for the detection of the local induction,
the inhomogeneous Condon domain structure has been directly observed at the
surface of a pure silver single crystal under strong Landau quantization in
magnetic fields up to 10 T. The inhomogeneous induction occurs in the
theoretically predicted part of the H-T Condon domain phase diagram.
Information about size, shape and orientation of the domains is obtained by
analyzing Hall probes placed along and across the long sample axis and by
tilting the sample. On a beryllium surface the induction inhomogeneity is
almost absent although the expected induction splitting here is at least ten
times higher than in silver.Comment: 4 pages, 6 figures, submitted to PR
Microbial residence time is a controlling parameter of the taxonomic composition and functional profile of microbial communities.
A remaining challenge within microbial ecology is to understand the determinants of richness and diversity observed in environmental microbial communities. In a range of systems, including activated sludge bioreactors, the microbial residence time (MRT) has been previously shown to shape the microbial community composition. However, the physiological and ecological mechanisms driving this influence have remained unclear. Here, this relationship is explored by analyzing an activated sludge system fed with municipal wastewater. Using a model designed in this study based on Monod-growth kinetics, longer MRTs were shown to increase the range of growth parameters that enable persistence, resulting in increased richness and diversity in the modeled community. In laboratory experiments, six sequencing batch reactors treating domestic wastewater were operated in parallel at MRTs between 1 and 15 days. The communities were characterized using both 16S ribosomal RNA and non-target messenger RNA sequencing (metatranscriptomic analysis), and model-predicted monotonic increases in richness were confirmed in both profiles. Accordingly, taxonomic Shannon diversity also increased with MRT. In contrast, the diversity in enzyme class annotations resulting from the metatranscriptomic analysis displayed a non-monotonic trend over the MRT gradient. Disproportionately high abundances of transcripts encoding for rarer enzymes occur at longer MRTs and lead to the disconnect between taxonomic and functional diversity profiles
Hysteresis in the de Haas-van Alphen Effect
A hysteresis loop is observed for the first time in the de Haas-van Alphen
(dHvA) effect of beryllium at low temperatures and quantizing magnetic field
applied parallel to the hexagonal axis of the single crystal. The irreversible
behavior of the magnetization occurs at the paramagnetic part of the dHvA
period in conditions of Condon domain formation arising by strong enough dHvA
amplitude. The resulting extremely nonlinear response to a very small
modulation field offers the possibility to find in a simple way the Condon
domain phase diagram. From a harmonic analysis, the shape and size of the
hysteresis loop is constructed.Comment: 4 pages, 5 figures, submitted to PR
M-Dwarf Fast Rotators and the Detection of Relatively Young Multiple M-Star Systems
We have searched the Kepler light curves of ~3900 M-star targets for evidence
of periodicities that indicate, by means of the effects of starspots, rapid
stellar rotation. Several analysis techniques, including Fourier transforms,
inspection of folded light curves, 'sonograms', and phase tracking of
individual modulation cycles, were applied in order to distinguish the
periodicities due to rapid rotation from those due to stellar pulsations,
eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets
with rotation periods, P_rot, of < 2 days, and 110 with P_rot < 1 day. Some 30
of the 178 systems exhibit two or more independent short periods within the
same Kepler photometric aperture, while several have three or more short
periods. Adaptive optics imaging and modeling of the Kepler pixel response
function for a subset of our sample support the conclusion that the targets
with multiple periods are highly likely to be relatively young physical binary,
triple, and even quadruple M star systems. We explore in detail the one object
with four incommensurate periods all less than 1.2 days, and show that two of
the periods arise from one of a close pair of stars, while the other two arise
from the second star, which itself is probably a visual binary. If most of
these M-star systems with multiple periods turn out to be bound M stars, this
could prove a valuable way of discovering young hierarchical M-star systems;
the same approach may also be applicable to G and K stars. The ~5% occurrence
rate of rapid rotation among the ~3900 M star targets is consistent with spin
evolution models that include an initial contraction phase followed by magnetic
braking, wherein a typical M star can spend several hundred Myr before spinning
down to periods longer than 2 days.Comment: 17 pages, 12 figures, 2 tables; accepted for publication in The
Astrophysical Journa
Fermi Surface Properties of Low Concentration CeLaB: dHvA
The de Haas-van Alphen effect is used to study angular dependent extremal
areas of the Fermi Surfaces (FS) and effective masses of CeLaB alloys for between 0 and 0.05. The FS of these alloys was previously
observed to be spin polarized at low Ce concentration ( = 0.05). This work
gives the details of the initial development of the topology and spin
polarization of the FS from that of unpolarized metallic LaB to that of
spin polarized heavy Fermion CeB .Comment: 7 pages, 9 figures, submitted to PR
- …
