199 research outputs found
Stability with respect to domain of the low Mach number limit of compressible viscous fluids
We study the asymptotic limit of solutions to the barotropic Navier-Stokes
system, when the Mach number is proportional to a small parameter \ep \to 0
and the fluid is confined to an exterior spatial domain \Omega_\ep that may
vary with \ep. As , it is shown that the fluid
density becomes constant while the velocity converges to a solenoidal vector
field satisfying the incompressible Navier-Stokes equations on a limit domain.
The velocities approach the limit strongly (a.a.) on any compact set, uniformly
with respect to a certain class of domains. The proof is based on spectral
analysis of the associated wave propagator (Neumann Laplacian) governing the
motion of acoustic waves.Comment: 32 page
Singular Cucker-Smale Dynamics
The existing state of the art for singular models of flocking is overviewed,
starting from microscopic model of Cucker and Smale with singular communication
weight, through its mesoscopic mean-filed limit, up to the corresponding
macroscopic regime. For the microscopic Cucker-Smale (CS) model, the
collision-avoidance phenomenon is discussed, also in the presence of bonding
forces and the decentralized control. For the kinetic mean-field model, the
existence of global-in-time measure-valued solutions, with a special emphasis
on a weak atomic uniqueness of solutions is sketched. Ultimately, for the
macroscopic singular model, the summary of the existence results for the
Euler-type alignment system is provided, including existence of strong
solutions on one-dimensional torus, and the extension of this result to higher
dimensions upon restriction on the smallness of initial data. Additionally, the
pressureless Navier-Stokes-type system corresponding to particular choice of
alignment kernel is presented, and compared - analytically and numerically - to
the porous medium equation
- …
