2,613 research outputs found

    Molecular dynamics of folding of secondary structures in Go-type models of proteins

    Full text link
    We consider six different secondary structures of proteins and construct two types of Go-type off-lattice models: with the steric constraints and without. The basic aminoacid-aminoacid potential is Lennard Jones for the native contacts and a soft repulsion for the non-native contacts. The interactions are chosen to make the target secondary structure be the native state of the system. We provide a thorough equilibrium and kinetic characterization of the sequences through the molecular dynamics simulations with the Langevin noise. Models with the steric constraints are found to be better folders and to be more stable, especially in the case of the β\beta-structures. Phononic spectra for vibrations around the native states have low frequency gaps that correlate with the thermodynamic stability. Folding of the secondary structures proceeds through a well defined sequence of events. For instance, α\alpha-helices fold from the ends first. The closer to the native state, the faster establishment of the contacts. Increasing the system size deteriorates the folding characteristics. We study the folding times as a function of viscous friction and find a regime of moderate friction with the linear dependence. We also consider folding when one end of a structure is pinned which imitates instantaneous conditions when a protein is being synthesized. We find that, under such circumstances, folding of helices is faster and of the β\beta-sequences slower.Comment: REVTeX, 14 pages, EPS figures included, JCP in pres

    Nonlinear interaction between electromagnetic fields at high temperature

    Get PDF
    The electron-positron `box' diagram produces an effective action which is fourth order in the electromagnetic field. We examine the behaviour of this effective action at high-temperature (in analytically continued imaginary-time thermal perturbation theory). We argue that there is a finite, nonzero limit as TT\rightarrow \infty (where TT is the temperature). We calculate this limit in the nonrelativistic static case, and in the long-wavelength limit. We also briefly discuss the self-energy in 2-dimensional QED, which is similar in some respects.Comment: 13 pages, DAMTP 94/3

    Towards a political economy framework for wind power: Does China break the mould?

    Full text link
    We propose a general taxonomy of the political economy challenges to wind power development and integration, highlighting the implications in terms of actors, interests, and risks. Applying this framework to three functions in China's electricity sector - planning and project approval, generator cost recovery, and balancing area coordination - we find evidence of challenges common across countries with significant wind investments, despite institutional and industry characteristics that are unique to China. We argue that resolving these political economy challenges is as important to facilitating the role of wind and other renewable energies in a low carbon energy transition as providing dedicated technical and policy support. China is no exception

    Cherenkov radiation by particles traversing the background radiatio n

    Get PDF
    High energy particles traversing the Universe through the cosmic microwave backgroung radiation can, in principle, emit Cherenkov radiation. It is shown that the energy threshold for this radiation is extremely high and its intensity would be too low due to the low density of the "relic photons gas" and very weak interaction of two photons.Comment: 6 pages, LATEX, no Figs.; to be published in JETP Lett. 75 (N4) (2002

    QED Corrections to Planck's Radiation Law and Photon Thermodynamics

    Full text link
    Leading corrections to Planck's formula and photon thermodynamics arising from the pair-mediated photon-photon interaction are calculated. This interaction is attractive and causes an increase in occupation number for all modes. Possible consequences, including the role of the cosmic photon gas in structure formation, are considered.Comment: 15 pages, Revtex 3.

    Suspected oseltamivir-induced bradycardia

    Get PDF

    Sequencing of folding events in Go-like proteins

    Full text link
    We have studied folding mechanisms of three small globular proteins: crambin (CRN), chymotrypsin inhibitor 2 (CI2) and the fyn Src Homology 3 domain (SH3) which are modelled by a Go-like Hamiltonian with the Lennard-Jones interactions. It is shown that folding is dominated by a well-defined sequencing of events as determined by establishment of particular contacts. The order of events depends primarily on the geometry of the native state. Variations in temperature, coupling strengths and viscosity affect the sequencing scenarios to a rather small extent. The sequencing is strongly correlated with the distance of the contacting aminoacids along the sequence. Thus α\alpha-helices get established first. Crambin is found to behave like a single-route folder, whereas in CI2 and SH3 the folding trajectories are more diversified. The folding scenarios for CI2 and SH3 are consistent with experimental studies of their transition states.Comment: REVTeX, 12 pages, 11 EPS figures, J. Chem. Phys (in press

    One Loop Multiphoton Helicity Amplitudes

    Full text link
    We use the solutions to the recursion relations for double-off-shell fermion currents to compute helicity amplitudes for nn-photon scattering and electron-positron annihilation to photons in the massless limit of QED. The form of these solutions is simple enough to allow {\it all}\ of the integrations to be performed explicitly. For nn-photon scattering, we find that unless n=4n=4, the amplitudes for the helicity configurations (+++...+) and (-++...+) vanish to one-loop order.Comment: 27 pages + 4 uuencoded figures (included), Fermilab-Pub-93/327-T, RevTe

    Quantum Electrodynamics of the Helium Atom

    Full text link
    Using singlet S states of the helium atom as an example, I describe precise calculation of energy levels in few-electron atoms. In particular, a complete set of effective operators is derived which generates O(m*alpha^6) relativistic and radiative corrections to the Schr"odinger energy. Average values of these operators can be calculated using a variational Schr"odinger wave function.Comment: 23 pages, revte
    corecore