1,078 research outputs found

    Growth of Oxide Compounds under Dynamic Atmosphere Composition

    Full text link
    Commercially available gases contain residual impurities leading to a background oxygen partial pressure of typically several 10^{-6} bar, independent of temperature. This oxygen partial pressure is inappropriate for the growth of some single crystals where the desired oxidation state possesses a narrow stability field. Equilibrium thermodynamic calculations allow the determination of dynamic atmosphere compositions yielding such self adjusting and temperature dependent oxygen partial pressures, that crystals like ZnO, Ga2O3, or Fe{1-x}O can be grown from the melt.Comment: 4 pages, 3 figures, talk on CGCT-4 Sendai, May 21-24, 200

    The PyCBC search for gravitational waves from compact binary coalescence

    Get PDF
    We describe the PyCBC search for gravitational waves from compact-object binary coalescences in advanced gravitational-wave detector data. The search was used in the first Advanced LIGO observing run and unambiguously identified two black hole binary mergers, GW150914 and GW151226. At its core, the PyCBC search performs a matched-filter search for binary merger signals using a bank of gravitational-wave template waveforms. We provide a complete description of the search pipeline including the steps used to mitigate the effects of noise transients in the data, identify candidate events and measure their statistical significance. The analysis is able to measure false-alarm rates as low as one per million years, required for confident detection of signals. Using data from initial LIGO's sixth science run, we show that the new analysis reduces the background noise in the search, giving a 30% increase in sensitive volume for binary neutron star systems over previous searches.Comment: 29 pages, 7 figures, accepted by Classical and Quantum Gravit

    Enforceability of Interest on Interest in Colorado

    Get PDF

    After the Sun: Energy Use in Blue v. Green Water for Agriculture

    Get PDF
    The purpose of this article is to highlight the difference in energy consumption between using blue water versus green water for agriculture in areas where water-intensive crops are grown in water-scarce regions. It focuses on water and energy consumption for greening the desert in United States, the world’s largest grain producer. The analysis is limited to the three largest crops by volume and value; corn, cotton, and wheat, which generate billions of dollars for the economy and use billions of gallons of water each day. The primary methodology is to use Geographic Information Systems (GIS) to visually represent the comparative amounts of blue water and green water used to grow water-intensive crops in water-scarce regions, by statistically mapping levels of water stress overlaid with the amounts of blue water versus green water used. It exposes where energy-intensive water practices are occurring due to a high dependence on blue water for irrigation in agriculture. The article concludes by discussing strategies to improve energy efficiency and reduce the vulnerabilities associated with overdependence on blue water such as high energy costs, low energy security, and susceptibility to aquifer reduction and ground water depletion

    The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains

    Get PDF
    We have investigated the contribution to ionic selectivity of residues in the selectivity filter and pore helices of the P1 and P2 domains in the acid sensitive potassium channel TASK-1. We used site directed mutagenesis and electrophysiological studies, assisted by structural models built through computational methods. We have measured selectivity in channels expressed in Xenopus oocytes, using voltage clamp to measure shifts in reversal potential and current amplitudes when Rb+ or Na+ replaced extracellular K+. Both P1 and P2 contribute to selectivity, and most mutations, including mutation of residues in the triplets GYG and GFG in P1 and P2, made channels nonselective. We interpret the effects of these—and of other mutations—in terms of the way the pore is likely to be stabilised structurally. We show also that residues in the outer pore mouth contribute to selectivity in TASK-1. Mutations resulting in loss of selectivity (e.g. I94S, G95A) were associated with slowing of the response of channels to depolarisation. More important physiologically, pH sensitivity is also lost or altered by such mutations. Mutations that retained selectivity (e.g. I94L, I94V) also retained their response to acidification. It is likely that responses both to voltage and pH changes involve gating at the selectivity filter

    Simulative Investigations of the Influence of Surface Indentations on Residual Stresses on Inner Raceways for Roller Element Bearings

    Get PDF
    Resource-efficient machine elements are in the focus of current research. One of the most widely used machine elements are roller bearings. Thus, the optimization of bearings and their tribological properties promises to result in significant resource savings. Special focus is set on the bearing fatigue life, which may be significantly reduced by indentations on the raceways. The reduction in fatigue life can be caused by processes such as rolling over particles or by brinelling. These processes induce local stress peaks and lead to elastic-plastic deformations of the raceways. During the subsequent operation, the pile up of material around the indentations is flattened and hence the residual stresses change. Inside these so called shoulders stress pealcs, residual stresses and hardening effects occur possibly resulting in crack initiation, crack growth under cyclic loading, and eventually spalling of material. For deeper and more sharp-edged indentations the bearing fatigue life is reduced more. To quantify the influence of an indentation on the bearing rating life a calculation model was developed based on the approach of IOANNIDES, BERGLING and GABELLI. For this, a 3D-FE model is used to calculate the three dimensional stress fields by superposition of residual and load stresses

    Retrospective harm benefit analysis of pre-clinical animal research for six treatment interventions

    Get PDF
    The harm benefit analysis (HBA) is the cornerstone of animal research regulation and is considered to be a key ethical safeguard for animals. The HBA involves weighing the anticipated benefits of animal research against its predicted harms to animals but there are doubts about how objective and accountable this process is.i. To explore the harms to animals involved in pre-clinical animal studies and to assess these against the benefits for humans accruing from these studies; ii. To test the feasibility of conducting this type of retrospective HBA.Data on harms were systematically extracted from a sample of pre-clinical animal studies whose clinical relevance had already been investigated by comparing systematic reviews of the animal studies with systematic reviews of human studies for the same interventions (antifibrinolytics for haemorrhage, bisphosphonates for osteoporosis, corticosteroids for brain injury, Tirilazad for stroke, antenatal corticosteroids for neonatal respiratory distress and thrombolytics for stroke). Clinical relevance was also explored in terms of current clinical practice. Harms were categorised for severity using an expert panel. The quality of the research and its impact were considered. Bateson's Cube was used to conduct the HBA.The most common assessment of animal harms by the expert panel was 'severe'. Reported use of analgesia was rare and some animals (including most neonates) endured significant procedures with no, or only light, anaesthesia reported. Some animals suffered iatrogenic harms. Many were kept alive for long periods post-experimentally but only 1% of studies reported post-operative care. A third of studies reported that some animals died prior to endpoints. All the studies were of poor quality. Having weighed the actual harms to animals against the actual clinical benefits accruing from these studies, and taking into account the quality of the research and its impact, less than 7% of the studies were permissible according to Bateson's Cube: only the moderate bisphosphonate studies appeared to minimise harms to animals whilst being associated with benefit for humans.This is the first time the accountability of the HBA has been systematically explored across a range of pre-clinical animal studies. The regulatory systems in place when these studies were conducted failed to safeguard animals from severe suffering or to ensure that only beneficial, scientifically rigorous research was conducted. Our findings indicate a pressing need to: i. review regulations, particularly those that permit animals to suffer severe harms; ii. reform the processes of prospectively assessing pre-clinical animal studies to make them fit for purpose; and iii. systematically evaluate the benefits of pre-clinical animal research to permit a more realistic assessment of its likely future benefits

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015

    Cal Poly Microgrid Fixed PV Array

    Get PDF
    The Mechanical Engineering Department at California Polytechnic State University of San Luis Obispo would like an adjustable, fixed angle solar panel mount to help educate students on basic solar energy principles. Our team has developed a unique sawhorse design utilizing ideation techniques and design selection tools. The selected design allows for multiple panel adjustability and control of both azimuth and tilt angle. Safety concerns are addressed with action plans to mitigate risk. Concept prototypes to justify gearbox functionality and subsystem cohesion was utilized to reduce manufacturing issues. Manufacturing began in March 2020 and proceed through until the end of the month. The manufacturing of the mount was halted due to COVID-19, forcing the design to end strictly in a what-if manufacturing procedure to allow the construction of it to be done in future time
    corecore