1,078 research outputs found
Growth of Oxide Compounds under Dynamic Atmosphere Composition
Commercially available gases contain residual impurities leading to a
background oxygen partial pressure of typically several 10^{-6} bar,
independent of temperature. This oxygen partial pressure is inappropriate for
the growth of some single crystals where the desired oxidation state possesses
a narrow stability field. Equilibrium thermodynamic calculations allow the
determination of dynamic atmosphere compositions yielding such self adjusting
and temperature dependent oxygen partial pressures, that crystals like ZnO,
Ga2O3, or Fe{1-x}O can be grown from the melt.Comment: 4 pages, 3 figures, talk on CGCT-4 Sendai, May 21-24, 200
The PyCBC search for gravitational waves from compact binary coalescence
We describe the PyCBC search for gravitational waves from compact-object
binary coalescences in advanced gravitational-wave detector data. The search
was used in the first Advanced LIGO observing run and unambiguously identified
two black hole binary mergers, GW150914 and GW151226. At its core, the PyCBC
search performs a matched-filter search for binary merger signals using a bank
of gravitational-wave template waveforms. We provide a complete description of
the search pipeline including the steps used to mitigate the effects of noise
transients in the data, identify candidate events and measure their statistical
significance. The analysis is able to measure false-alarm rates as low as one
per million years, required for confident detection of signals. Using data from
initial LIGO's sixth science run, we show that the new analysis reduces the
background noise in the search, giving a 30% increase in sensitive volume for
binary neutron star systems over previous searches.Comment: 29 pages, 7 figures, accepted by Classical and Quantum Gravit
After the Sun: Energy Use in Blue v. Green Water for Agriculture
The purpose of this article is to highlight the difference in energy consumption between using blue water versus green water for agriculture in areas where water-intensive crops are grown in water-scarce regions. It focuses on water and energy consumption for greening the desert in United States, the world’s largest grain producer. The analysis is limited to the three largest crops by volume and value; corn, cotton, and wheat, which generate billions of dollars for the economy and use billions of gallons of water each day. The primary methodology is to use Geographic Information Systems (GIS) to visually represent the comparative amounts of blue water and green water used to grow water-intensive crops in water-scarce regions, by statistically mapping levels of water stress overlaid with the amounts of blue water versus green water used. It exposes where energy-intensive water practices are occurring due to a high dependence on blue water for irrigation in agriculture. The article concludes by discussing strategies to improve energy efficiency and reduce the vulnerabilities associated with overdependence on blue water such as high energy costs, low energy security, and susceptibility to aquifer reduction and ground water depletion
The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains
We have investigated the contribution to ionic
selectivity of residues in the selectivity filter and pore
helices of the P1 and P2 domains in the acid sensitive
potassium channel TASK-1. We used site directed mutagenesis
and electrophysiological studies, assisted by structural
models built through computational methods. We have
measured selectivity in channels expressed in Xenopus
oocytes, using voltage clamp to measure shifts in reversal
potential and current amplitudes when Rb+ or Na+ replaced
extracellular K+. Both P1 and P2 contribute to selectivity,
and most mutations, including mutation of residues in the
triplets GYG and GFG in P1 and P2, made channels nonselective.
We interpret the effects of these—and of other
mutations—in terms of the way the pore is likely to be
stabilised structurally. We show also that residues in the
outer pore mouth contribute to selectivity in TASK-1.
Mutations resulting in loss of selectivity (e.g. I94S, G95A)
were associated with slowing of the response of channels to
depolarisation. More important physiologically, pH sensitivity
is also lost or altered by such mutations. Mutations
that retained selectivity (e.g. I94L, I94V) also retained their
response to acidification. It is likely that responses both to
voltage and pH changes involve gating at the selectivity filter
Simulative Investigations of the Influence of Surface Indentations on Residual Stresses on Inner Raceways for Roller Element Bearings
Resource-efficient machine elements are in the focus of current research. One of the most widely used machine elements are roller bearings. Thus, the optimization of bearings and their tribological properties promises to result in significant resource savings. Special focus is set on the bearing fatigue life, which may be significantly reduced by indentations on the raceways. The reduction in fatigue life can be caused by processes such as rolling over particles or by brinelling. These processes induce local stress peaks and lead to elastic-plastic deformations of the raceways. During the subsequent operation, the pile up of material around the indentations is flattened and hence the residual stresses change. Inside these so called shoulders stress pealcs, residual stresses and hardening effects occur possibly resulting in crack initiation, crack growth under cyclic loading, and eventually spalling of material. For deeper and more sharp-edged indentations the bearing fatigue life is reduced more. To quantify the influence of an indentation on the bearing rating life a calculation model was developed based on the approach of IOANNIDES, BERGLING and GABELLI. For this, a 3D-FE model is used to calculate the three dimensional stress fields by superposition of residual and load stresses
Retrospective harm benefit analysis of pre-clinical animal research for six treatment interventions
The harm benefit analysis (HBA) is the cornerstone of animal research regulation and is considered to be a key ethical safeguard for animals. The HBA involves weighing the anticipated benefits of animal research against its predicted harms to animals but there are doubts about how objective and accountable this process is.i. To explore the harms to animals involved in pre-clinical animal studies and to assess these against the benefits for humans accruing from these studies; ii. To test the feasibility of conducting this type of retrospective HBA.Data on harms were systematically extracted from a sample of pre-clinical animal studies whose clinical relevance had already been investigated by comparing systematic reviews of the animal studies with systematic reviews of human studies for the same interventions (antifibrinolytics for haemorrhage, bisphosphonates for osteoporosis, corticosteroids for brain injury, Tirilazad for stroke, antenatal corticosteroids for neonatal respiratory distress and thrombolytics for stroke). Clinical relevance was also explored in terms of current clinical practice. Harms were categorised for severity using an expert panel. The quality of the research and its impact were considered. Bateson's Cube was used to conduct the HBA.The most common assessment of animal harms by the expert panel was 'severe'. Reported use of analgesia was rare and some animals (including most neonates) endured significant procedures with no, or only light, anaesthesia reported. Some animals suffered iatrogenic harms. Many were kept alive for long periods post-experimentally but only 1% of studies reported post-operative care. A third of studies reported that some animals died prior to endpoints. All the studies were of poor quality. Having weighed the actual harms to animals against the actual clinical benefits accruing from these studies, and taking into account the quality of the research and its impact, less than 7% of the studies were permissible according to Bateson's Cube: only the moderate bisphosphonate studies appeared to minimise harms to animals whilst being associated with benefit for humans.This is the first time the accountability of the HBA has been systematically explored across a range of pre-clinical animal studies. The regulatory systems in place when these studies were conducted failed to safeguard animals from severe suffering or to ensure that only beneficial, scientifically rigorous research was conducted. Our findings indicate a pressing need to: i. review regulations, particularly those that permit animals to suffer severe harms; ii. reform the processes of prospectively assessing pre-clinical animal studies to make them fit for purpose; and iii. systematically evaluate the benefits of pre-clinical animal research to permit a more realistic assessment of its likely future benefits
Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study
Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015
Cal Poly Microgrid Fixed PV Array
The Mechanical Engineering Department at California Polytechnic State University of San Luis Obispo would like an adjustable, fixed angle solar panel mount to help educate students on basic solar energy principles. Our team has developed a unique sawhorse design utilizing ideation techniques and design selection tools. The selected design allows for multiple panel adjustability and control of both azimuth and tilt angle. Safety concerns are addressed with action plans to mitigate risk. Concept prototypes to justify gearbox functionality and subsystem cohesion was utilized to reduce manufacturing issues. Manufacturing began in March 2020 and proceed through until the end of the month. The manufacturing of the mount was halted due to COVID-19, forcing the design to end strictly in a what-if manufacturing procedure to allow the construction of it to be done in future time
- …
