2,779 research outputs found
Hadronic production of a Higgs boson and two jets at next-to-leading order
We perform an update of the next-to-leading order calculation of the rate for
Higgs boson production in association with two jets. Our new calculation
incorporates the full analytic result for the one-loop virtual amplitude. This
new theoretical information allows us to construct a code including the decay
of the Higgs boson without incurring a prohibitive penalty in computer running
time. Results are presented for the Tevatron, where implications for the Higgs
search are sketched, and also for a range of scenarios at the LHC.Comment: 16 pages, 4 figure
Supersymmetric Dark Matter and the Energy of a Linear Electron-Positron Collider
We suggest that supersymmetric dark matter be used to set the energy scale of a linear collider. Assuming that the lightest supersymmetric particle (LSP) is a stable neutralino , as in many incarnations of the MSSM with conserved R parity, previous calculations that include coannihilation effects have delineated the region of the plane where the LSP cosmological relic density lies in the preferred range 0.1 \la \Omega_{\chi} h^2 \la 0.3. We evaluate here the total cross section for visible pairs of supersymmetric particles, for different values of and , and investigate how much of the dark matter region can be explored by colliders with different centre-of-mass energies . We find that a collider with GeV or 1 TeV can only explore part of the cosmological region, and that a collider with TeV with sufficient luminosity can explore all of the supersymmetric dark matter region
Testing and improving the numerical accuracy of the NLO predictions
I present a new and reliable method to test the numerical accuracy of NLO
calculations based on modern OPP/Generalized Unitarity techniques. A convenient
solution to rescue most of the detected numerically inaccurate points is also
proposed.Comment: References added. 1 Table added. Version accepted for publicatio
Dark Matter in SuperGUT Unification Models
After a brief update on the prospects for dark matter in the constrained
version of the MSSM (CMSSM) and its differences with models based on minimal
supergravity (mSUGRA), I will consider the effects of unifying the
supersymmetry-breaking parameters at a scale above M_{GUT}. One of the
consequences of superGUT unification, is the ability to take vanishing scalar
masses at the unification scale with a neutralino LSP dark matter candidate.
This allows one to resurrect no-scale supergravity as a viable phenomenological
model.Comment: 12 pages, 16 figures, To be published in the Proceedings of the 6th
DSU Conference, Leon, Mexico, ed. D. Delepin
Direct Detection of Dark Matter in the MSSM with Non-Universal Higgs Masses
We calculate dark matter scattering rates in the minimal supersymmetric
extension of the Standard Model (MSSM), allowing the soft
supersymmetry-breaking masses of the Higgs multiplets, m_{1,2}, to be
non-universal (NUHM). Compared with the constrained MSSM (CMSSM) in which
m_{1,2} are required to be equal to the soft supersymmetry-breaking masses m_0
of the squark and slepton masses, we find that the elastic scattering cross
sections may be up to two orders of magnitude larger than values in the CMSSM
for similar LSP masses. We find the following preferred ranges for the
spin-independent cross section: 10^{-6} pb \ga \sigma_{SI} \ga 10^{-10} pb, and
for the spin-dependent cross section: 10^{-3} pb \ga \sigma_{SD}, with the
lower bound on \sigma_{SI} dependent on using the putative constraint from the
muon anomalous magnetic moment. We stress the importance of incorporating
accelerator and dark matter constraints in restricting the NUHM parameter
space, and also of requiring that no undesirable vacuum appear below the GUT
scale. In particular, values of the spin-independent cross section another
order of magnitude larger would appear to be allowed, for small \tan \beta, if
the GUT vacuum stability requirement were relaxed, and much lower cross-section
values would be permitted if the muon anomalous magnetic moment constraint were
dropped.Comment: 30 pages LaTeX, 40 eps figure
Phenomenology and Cosmology of an Electroweak Pseudo-Dilaton and Electroweak Baryons
In many strongly-interacting models of electroweak symmetry breaking the
lowest-lying observable particle is a pseudo-Goldstone boson of approximate
scale symmetry, the pseudo-dilaton. Its interactions with Standard Model
particles can be described using a low-energy effective nonlinear chiral
Lagrangian supplemented by terms that restore approximate scale symmetry,
yielding couplings of the pseudo-dilaton that differ from those of a Standard
Model Higgs boson by fixed factors. We review the experimental constraints on
such a pseudo-dilaton in light of new data from the LHC and elsewhere. The
effective nonlinear chiral Lagrangian has Skyrmion solutions that may be
identified with the `electroweak baryons' of the underlying
strongly-interacting theory, whose nature may be revealed by the properties of
the Skyrmions. We discuss the finite-temperature electroweak phase transition
in the low-energy effective theory, finding that the possibility of a
first-order electroweak phase transition is resurrected. We discuss the
evolution of the Universe during this transition and derive an
order-of-magnitude lower limit on the abundance of electroweak baryons in the
absence of a cosmological asymmetry, which suggests that such an asymmetry
would be necessary if the electroweak baryons are to provide the cosmological
density of dark matter. We revisit estimates of the corresponding
spin-independent dark matter scattering cross section, with a view to direct
detection experiments.Comment: 34 pages, 4 figures, additional references adde
Colliders and Cosmology
Dark matter in variations of constrained minimal supersymmetric standard
models will be discussed. Particular attention will be given to the comparison
between accelerator and direct detection constraints.Comment: Submitted for the SUSY07 proceedings, 15 pages, LaTex, 26 eps figure
Relating the CMSSM and SUGRA models with GUT scale and Super-GUT scale Supersymmetry Breaking
While the constrained minimal supersymmetric standard model (CMSSM) with
universal gaugino masses, m_{1/2}, scalar masses, m_0, and A-terms, A_0,
defined at some high energy scale (usually taken to be the GUT scale) is
motivated by general features of supergravity models, it does not carry all of
the constraints imposed by minimal supergravity (mSUGRA). In particular, the
CMSSM does not impose a relation between the trilinear and bilinear soft
supersymmetry breaking terms, B_0 = A_0 - m_0, nor does it impose the relation
between the soft scalar masses and the gravitino mass, m_0 = m_{3/2}. As a
consequence, tan(\beta) is computed given values of the other CMSSM input
parameters. By considering a Giudice-Masiero (GM) extension to mSUGRA, one can
introduce new parameters to the K\"ahler potential which are associated with
the Higgs sector and recover many of the standard CMSSM predictions. However,
depending on the value of A_0, one may have a gravitino or a neutralino dark
matter candidate. We also consider the consequences of imposing the
universality conditions above the GUT scale. This GM extension provides a
natural UV completion for the CMSSM.Comment: 16 pages, 11 figures; added erratum correcting several equations and
results in Sec.2, Sec.3 and 4 remain unaffected and conclusions unchange
Constraints on Supersymmetric Flavour Models from b->s gamma
We consider the effects of departures from minimal flavour violations (MFV)
in the context of CMSSM-like theories. Second and third generation off-diagonal
elements in the Yukawa, sfermion, and trilinear mass matrices are taken to be
non-zero at the GUT scale. These are run down together with MSSM parameters to
the electroweak scale. We apply constraints from fermion masses and CKM matrix
elements to limit the range of the new free parameters of the model. We
determine the effect of the departure from MFV on the branching ratio of b->s
gamma. We find that only when the expansion parameter in the down-squark sector
is relatively large there is a noticeable effect, which tends to relax the
lower limit from b->s gamma on the universal gaugino mass. We also find that
the expansion parameter associated with the slepton sector needs to be smaller
than the corresponding parameter in the down-squark sector in order to be
compliant with the bound imposed by the branching ratio of tau-> mu gamma.Comment: Comments: 43 pages, 14 figures. Version accepted for publication:
typos corrected, rewritten for better understanding and references adde
- …
