2,178 research outputs found
Application of software mining to automatic user interface generation
Many software projects spend a significant proportion of their time developing the User Interface, so any degree of automation in this area has clear benefits. Research projects to date generally take one of three approaches: interactive graphical specification tools, model-based generation tools, or languagebased tools. The first two have proven popular in industry but are labour intensive and error-prone. The third is more automated but has practical problems which limit its usefulness. This paper proposes applying the emerging field of software mining to perform runtime inspection of an application's architecture and reduce the labour intensive nature of interactive graphical specification tools and model-based generation tools. It also proposes UI generation can be made more practical by delimiting useful bounds to the generation process. The paper concludes with a description of a prototype project that implements these ideas
Preliminary evidence for the influence of physiography and scale upon the autocorrelation function of remotely sensed data
Previously established results demonstrate that LANDSAT data are autocorrelated and can be described by a univariate linear stochastic process known as auto-regressive-integrated-moving-average model of degree 1, 0, 1 or ARIMA (1, 0, 1). This model has two coefficients of interest for interpretation phi(1) and theta(1). In a comparison of LANDSAT thematic mapper simulator (TMS) data and LANDSAT MSS data several results were established: (1) The form of the relatedness as described by this model is not dependent upon system look angle or pixel size. (2) The phi(1) coefficient increases with decreasing pixel size and increasing topographic complexity. (3) Changes in topography have a greater influence upon phi(1) than changes in land cover class. (4) The theta(1) seems to vary with the amount of atmospheric haze. These patterns of variation in phi(1) and theta(1) are potentially exploitable by the remote sensing community to yield stochastically independent sets of observations, characterize topography, and reduce the number of bytes needed to store remotely sensed data
Uncertainty Relations for Positive Operator Valued Measures
How much unavoidable randomness is generated by a Positive Operator Valued
Measure (POVM)? We address this question using two complementary approaches.
First we study the variance of a real variable associated to the POVM outcomes.
In this context we introduce an uncertainty operator which measures how much
additional noise is introduced by carrying out a POVM rather than a von Neumann
measurement. We illustrate this first approach by studying the variances of
joint estimates of \sigma_x and \sigma_z for spin 1/2 particles. We show that
for unbiased measurements the sum of these variances is lower bounded by 1. In
our second approach we study the entropy of the POVM outcomes. In particular we
try to establish lower bounds on the entropy of the POVM outcomes. We
illustrate this second approach by examples.Comment: 5 pages, minor modifications and clarification
The complete Hard X Ray Burst Spectrometer event list, 1980-1989
This event list is a comprehensive reference for all Hard X ray bursts detected with the Hard X Ray Burst Spectrometer on the Solar Maximum Mission from the time of launch on Feb. 14, 1980 to the end of the mission in Dec. 1989. Some 12,776 events were detected in the energy range 30 to 600 keV with the vast majority being solar flares. This list includes the start time, peak time, duration, and peak rate of each event
A model for alignment between microscopic rods and vorticity
Numerical simulations show that microscopic rod-like bodies suspended in a
turbulent flow tend to align with the vorticity vector, rather than with the
dominant eignevector of the strain-rate tensor. This paper investigates an
analytically solvable limit of a model for alignment in a random velocity field
with isotropic statistics. The vorticity varies very slowly and the isotropic
random flow is equivalent to a pure strain with statistics which are
axisymmetric about the direction of the vorticity. We analyse the alignment in
a weakly fluctuating uniaxial strain field, as a function of the product of the
strain relaxation time and the angular velocity about
the vorticity axis. We find that when , the rods are
predominantly either perpendicular or parallel to the vorticity
Poultry
Getting winter eggs from hens / D. C. Kennard and V. D. Chamberlin -- The protein requirements of growing pullets / R. M. Bethke, Paul R. Record and D. C. Kennard -- Coarse versus fine mash / D. C. Kennard -- Chicken vices / D. C. Kennard -- Tipping the beaks / D. C. Kennard -- Use of woven wire in poultry keeping -- Sun parlors for chick
A discrete slug population model determined by egg production
Slugs are significant pests in agriculture (as well as a nuisance to gardeners), and it is therefore important to understand their population dynamics for the construction of efficient and effective control measures. Differential equation models of slug populations require the inclusion of large (variable) temporal delays, and strong seasonal forcing results in a non-autonomous system. This renders such models open to only a limited amount of rigorous analysis. In this paper, we derive a novel batch model based purely upon the quantity of eggs produced at different times of the year. This model is open to considerable reduction; from the resulting two variable discrete-time system it is possible to reconstruct the dynamics of the full population across the year and give conditions for extinction or global stability and persistence. Furthermore, the steady state temporal population distribution displays qualitatively different behavior with only small changes in the survival probability of slugs. The model demonstrates how small variations in the favorability of different years may result in widely different slug population fluctuations between consecutive years, and is in good agreement with field data
Nanoscale fluid flows in the vicinity of patterned surfaces
Molecular dynamics simulations of dense and rarefied fluids comprising small
chain molecules in chemically patterned nano-channels predict a novel switching
from Poiseuille to plug flow along the channel. We also demonstrate behavior
akin to the lotus effect for a nanodrop on a chemically patterned substrate.
Our results show that one can control and exploit the behavior of fluids at the
nanoscale using chemical patterning.Comment: Phys. Rev. Lett. in pres
- …
