1,374 research outputs found

    Salience-based selection: attentional capture by distractors less salient than the target

    Get PDF
    Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience

    Single-cell analysis of peptide expression and electrophysiology of right parietal neurons involved in male copulation behavior of a simultaneous hermaphrodite

    Get PDF
    Male copulation is a complex behavior that requires coordinated communication between the nervous system and the peripheral reproductive organs involved in mating. In hermaphroditic animals, such as the freshwater snail Lymnaea stagnalis, this complexity increases since the animal can behave both as male and female. The performance of the sexual role as a male is coordinated via a neuronal communication regulated by many peptidergic neurons, clustered in the cerebral and pedal ganglia and dispersed in the pleural and parietal ganglia. By combining single-cell matrix-assisted laser mass spectrometry with retrograde staining and electrophysiology, we analyzed neuropeptide expression of single neurons of the right parietal ganglion and their axonal projections into the penial nerve. Based on the neuropeptide profile of these neurons, we were able to reconstruct a chemical map of the right parietal ganglion revealing a striking correlation with the earlier electrophysiological and neuroanatomical studies. Neurons can be divided into two main groups: (i) neurons that express heptapeptides and (ii) neurons that do not. The neuronal projection of the different neurons into the penial nerve reveals a pattern where (spontaneous) activity is related to branching pattern. This heterogeneity in both neurochemical anatomy and branching pattern of the parietal neurons reflects the complexity of the peptidergic neurotransmission involved in the regulation of male mating behavior in this simultaneous hermaphrodite

    Therapeutic effects of the mitochondrial ROS-redox modulator KH176 in a mammalian model of Leigh Disease

    Get PDF
    Leigh Disease is a progressive neurometabolic disorder for which a clinical effective treatment is currently still lacking. Here, we report on the therapeutic efficacy of KH176, a new chemical entity derivative of Trolox, in Ndufs4 (-/-) mice, a mammalian model for Leigh Disease. Using in vivo brain diffusion tensor imaging, we show a loss of brain microstructural coherence in Ndufs4 (-/-) mice in the cerebral cortex, external capsule and cerebral peduncle. These findings are in line with the white matter diffusivity changes described in mitochondrial disease patients. Long-term KH176 treatment retained brain microstructural coherence in the external capsule in Ndufs4 (-/-) mice and normalized the increased lipid peroxidation in this area and the cerebral cortex. Furthermore, KH176 treatment was able to significantly improve rotarod and gait performance and reduced the degeneration of retinal ganglion cells in Ndufs4 (-/-) mice. These in vivo findings show that further development of KH176 as a potential treatment for mitochondrial disorders is worthwhile to pursue. Clinical trial studies to explore the potency, safety and efficacy of KH176 are ongoing

    Gaze shift reflex in a humanoid active vision system

    Get PDF
    Full awareness of sensory surroundings requires active attentional and behavioural exploration. In visual animals, visual, auditory and tactile stimuli elicit gaze shifts (head and eye movements) aimed at optimising visual perception of stimuli. Such gaze shifts can either be top-down attention driven (e.g. visual search) or they can be reflex movements triggered by unexpected changes in the surroundings. Here we present a model active vision system with focus on multi-sensory integration and the generation of desired gaze shift commands. Our model is based on recent data from studies of primate superior colliculus and is developed as part of the sensory-motor control of the humanoid robot CB

    The effect of amyloid pathology and glucose metabolism on cortical volume loss over time in Alzheimer’s disease

    Get PDF
    Purpose: The present multimodal neuroimaging study examined whether amyloid pathology and glucose metabolism are related to cortical volume loss over time in Alzheimer’s disease (AD) patients and healthy elderly controls. Methods: Structural MRI scans of eleven AD patients and ten controls were available at baseline and follow-up (mean interval 2.5 years). Change in brain structure over time was defined as percent change of cortical volume within seven a-priori defined regions that typically show the strongest structural loss in AD. In addition, two PET scans were performed at baseline: [[superscript 11]C]PIB to assess amyloid-β plaque load and [[superscript 18]F]FDG to assess glucose metabolism. [[superscript 11]C]PIB binding and [[superscript 18]F]FDG uptake were measured in the precuneus, a region in which both amyloid deposition and glucose hypometabolism occur early in the course of AD. Results: While amyloid-β plaque load at baseline was not related to cortical volume loss over time in either group, glucose metabolism within the group of AD patients was significantly related to volume loss over time (rho=0.56, p<0.05). Conclusion:The present study shows that in a group of AD patients amyloid-β plaque load as measured by [[superscript 11]C]PIB behaves as a trait marker (i.e., all AD patients showed elevated levels of amyloid, not related to subsequent disease course), whilst hypometabolism as measured by [[superscript 18]F]FDG changed over time indicating that it could serve as a state marker that is predictive of neurodegeneration.Hersenstichting Nederland (KS2011(1)-24)Athinoula A. Martinos Center for Biomedical ImagingInternationale Stichting Alzheimer Onderzoek (Project Number 11539

    Peripheral electrical stimulation in Alzheimer's Disease: A randomized controlled trial on cognition and behavior

    Get PDF
    In a number of studies, peripheral electrical nerve stimulation has been applied to Alzheimer's disease (AD) patients who lived in a nursing home. Improvements were observed in memory, verbal fluency, affective behavior, activities of daily living and on the rest-activity rhythm and pupillary light reflex. The aim of the present, randomized, placebo-controlled, parallel-group clinical trial was to examine the effects of electrical stimulation on cognition and behavior in AD patients who still live at home. Repeated measures analyses of variance revealed no effects of the intervention in the verum group (n = 32) compared with the placebo group (n = 30) on any of the cognitive and behavioral outcome measures. However, the majority of the patients and the caregivers evaluated the treatment procedure positively, and applying the daily treatment at home caused minimal burden. The lack of treatment effects calls for reconsideration of electrical stimulation as a symptomatic treatment in A

    International Paediatric Mitochondrial Disease Scale

    Get PDF
    Objective: There is an urgent need for reliable and universally applicable outcome measures for children with mitochondrial diseases. In this study, we aimed to adapt the currently available Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) to the International Paediatric Mitochondrial Disease Scale (IPMDS) during a Delphi-based process with input from international collaborators, patients and caretakers, as well as a pilot reliability study in eight patients. Subsequently, we aimed to test the feasibility, construct validity and reliability of the IPMDS in a multicentre study. Methods: A clinically, biochemically and genetically heterogeneous group of 17 patients (age 1.6–16 years) from five different expert centres from four different continents were evaluated in this study. Results: The feasibility of the IPMDS was good, as indicated by a low number of missing items (4 %) and the positive evaluation of patients, parents and users. Principal component analysis of our small sample identified three factors, which explained 57.9 % of the variance. Good construct validity was found using hypothesis testing. The overall interrater reliability was good [median intraclass correlation coefficient for agreement between raters (ICCagreement) 0.85; range 0.23–0.99). Conclusion: In conclusion, we suggest using the IPMDS for assessing natural history in children with mitochondrial diseases. These data should be used to further explore construct validity of the IPMDS and to set age limits. In parallel, responsiveness and the minimal clinically important difference should be studied to facilitate sample size calculations in future clinical trials
    corecore