238 research outputs found

    The Weierstrass subgroup of a curve has maximal rank

    Full text link
    We show that the Weierstrass points of the generic curve of genus gg over an algebraically closed field of characteristic 0 generate a group of maximal rank in the Jacobian

    A compact high-flux cold atom beam source

    Get PDF
    We report on an efficient and compact high-flux Cs atom beam source based on a retro-reflected two-dimensional magneto-optical trap (2D MOT). We realize an effective pushing field component by tilting the 2D MOT collimators towards a separate three-dimensional magneto-optical trap (3D MOT) in ultra-high vacuum. This technique significantly improved 3D MOT loading rates to greater than 8×1098 \times 10^9 atoms/s using only 20 mW of total laser power for the source. When operating below saturation, we achieve a maximum efficiency of 6.2×10116.2 \times 10^{11} atoms/s/W

    A Transportable Gravity Gradiometer Based on Atom Interferometry

    Get PDF
    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving rest frame for the trapped atoms. While still in this moving-frame molasses, the laser frequencies are further detuned from the atomic resonance (while maintaining this relative frequency shift) to cool the atom cloud's temperature to 2 K or below, corresponding to an rms velocity of less than 2 cm/s. After launch, the cold atoms undergo further state and velocity selection to prepare for atom interferometry. The atom interferometers are then realized using laser-induced stimulated Raman transitions to perform the necessary manipulations of each atom, and the resulting interferometer phase is measured using laser-induced fluorescence for state-normalized detection. More than 20 laser beams with independent controls of frequency, phase, and intensity are required for this measurement sequence. This instrument can facilitate the study of Earth's gravitational field from surface and air vehicles, as well as from space by allowing gravity mapping from a low-cost, single spacecraft mission. In addition, the operation of atom interferometer-based instruments in space offers greater sensitivity than is possible in terrestrial instruments due to the much longer interrogation times available in the microgravity environment. A space-based quantum gravity gradiometer has the potential to achieve sensitivities similar to the GRACE mission at long spatial wavelengths, and will also have resolution similar to GOCE for measurement at shorter length scales

    Hecke module structure of quaternions

    Get PDF
    Abstract The arithmetic of quaternions is recalled from a constructive point of view. A Hecke module is introduced, defined as a free abelian group on right ideal classes of a quaternion order, together with a natural action of Hecke operators. An equivalent construction in terms of Shimura curves is then introduced, and the quaternion construction is applied to the analysis of specific modular and Shimura curves

    USDA Plant Genome Research Program

    Get PDF
    The U.S. Congress appropriated funds in 1991 for the USDA Plant Genome Research Program, four years after its initial conception in 1987. The goal of the USDA Plant Genome Research Program is to improve plants (agronomic, horticultural, and forest tree species) by locating marker DNA or genes on chromosomes, determining gene structure, and transferring genes to improve plant performance with accompanying reduced environmental impact to meet marketplace needs and niches. The Plant Genome Research Program is one program with two parts: National Research Initiative and Plant Genome Database (PGD). The PGD is now a real and functioning information and data resource for agricultural and other plant science genome researchers, and it is in the public domain. Additional progress is given according to major plant groups. The PGD is a suite of several information products produced at the National Agricultural Library (NAL) in collaboration with the Agricultural Research Service and Forest Service species coordinators

    Géométrie et arithmétique explicites des variétés abéliennes et applications à la cryptographie

    Get PDF
    Les principaux objets étudiés dans cette thèse sont les équations décrivant le morphisme de groupe sur une variété abélienne, plongée dans un espace projectif, et leurs applications en cryptographie. Notons g sa dimension et k son corps de définition. Ce mémoire est composé de deux parties. La première porte sur l'étude des courbes d'Edwards, un modèle pour les courbes elliptiques possédant un sous-groupe de points k-rationnels cyclique d'ordre 4, connues en cryptographie pour l'efficacité de leur loi d'addition et la possibilité qu'elle soit définie pour toute paire de points k-rationnels (loi d'addition k-complète). Nous en donnons une interprétation géométrique et en déduisons des formules explicites pour le calcul du couplage de Tate réduit sur courbes d'Edwards tordues, dont l'efficacité rivalise avec les modèles elliptiques couramment utilisés. Cette partie se conclut par la génération, spécifique au calcul de couplages, de courbes d'Edwards dont les tailles correspondent aux standards cryptographiques actuellement en vigueur. Dans la seconde partie nous nous intéressons à la notion de complétude introduite ci-dessus. Cette propriété est cryptographiquement importante car elle permet d'éviter des attaques physiques, comme les attaques par canaux cachés, sur des cryptosystèmes basés sur les courbes elliptiques ou hyperelliptiques. Un précédent travail de Lange et Ruppert, basé sur la cohomologie des fibrés en droite, permet une approche théorique des lois d'addition. Nous présentons trois résultats importants : tout d'abord nous généralisons un résultat de Bosma et Lenstra en démontrant que le morphisme de groupe ne peut être décrit par strictement moins de g+1 lois d'addition sur la clôture algébrique de k. Ensuite nous démontrons que si le groupe de Galois absolu de k est infini, alors toute variété abélienne peut être plongée dans un espace projectif de manière à ce qu'il existe une loi d'addition k-complète. De plus, l'utilisation des variétés abéliennes nous limitant à celles de dimension un ou deux, nous démontrons qu'une telle loi existe pour leur plongement projectif usuel. Finalement, nous développons un algorithme, basé sur la théorie des fonctions thêta, calculant celle-ci dans P^15 sur la jacobienne d'une courbe de genre deux donnée par sa forme de Rosenhain. Il est désormais intégré au package AVIsogenies de Magma.The main objects we study in this PhD thesis are the equations describing the group morphism on an abelian variety, embedded in a projective space, and their applications in cryptograhy. We denote by g its dimension and k its field of definition. This thesis is built in two parts. The first one is concerned by the study of Edwards curves, a model for elliptic curves having a cyclic subgroup of k-rational points of order 4, known in cryptography for the efficiency of their addition law and the fact that it can be defined for any couple of k-rational points (k-complete addition law). We give the corresponding geometric interpretation and deduce explicit formulae to calculate the reduced Tate pairing on twisted Edwards curves, whose efficiency compete with currently used elliptic models. The part ends with the generation, specific to pairing computation, of Edwards curves with today's cryptographic standard sizes. In the second part, we are interested in the notion of completeness introduced above. This property is cryptographically significant, indeed it permits to avoid physical attacks as side channel attacks, on elliptic - or hyperelliptic - curves cryptosystems. A preceeding work of Lange and Ruppert, based on cohomology of line bundles, brings a theoretic approach of addition laws. We present three important results: first of all we generalize a result of Bosma and Lenstra by proving that the group morphism can not be described by less than g+1 addition laws on the algebraic closure of k. Next, we prove that if the absolute Galois group of k is infinite, then any abelian variety can be projectively embedded together with a k-complete addition law. Moreover, a cryptographic use of abelian varieties restricting us to the dimension one and two cases, we prove that such a law exists for their classical projective embedding. Finally, we develop an algorithm, based on the theory of theta functions, computing this addition law in P^15 on the Jacobian of a genus two curve given in Rosenhain form. It is now included in AVIsogenies, a Magma package.AIX-MARSEILLE2-Bib.electronique (130559901) / SudocSudocFranceF

    Photosynthetic rate of a virescent cotton mutant lacking chloroplast grana.

    Full text link
    corecore