223 research outputs found

    Weak- to strong pinning crossover

    Full text link
    Material defects in hard type II superconductors pin the flux lines and thus establish the dissipation-free current transport in the presence of a finite magnetic field. Depending on the density and pinning force of the defects and the vortex density, pinning is either weak-collective or strong. We analyze the weak- to strong pinning crossover of vortex matter in disordered superconductors and discuss the peak effect appearing naturally in this context.Comment: 4 pages, 2 figure

    Depinning transition of dislocation assemblies: pileup and low-angle grain boundary

    Get PDF
    We investigate the depinning transition occurring in dislocation assemblies. In particular, we consider the cases of regularly spaced pileups and low angle grain boundaries interacting with a disordered stress landscape provided by solute atoms, or by other immobile dislocations present in non-active slip systems. Using linear elasticity, we compute the stress originated by small deformations of these assemblies and the corresponding energy cost in two and three dimensions. Contrary to the case of isolated dislocation lines, which are usually approximated as elastic strings with an effective line tension, the deformations of a dislocation assembly cannot be described by local elastic interactions with a constant tension or stiffness. A nonlocal elastic kernel results as a consequence of long range interactions between dislocations. In light of this result, we revise statistical depinning theories and find novel results for Zener pinning in grain growth. Finally, we discuss the scaling properties of the dynamics of dislocation assemblies and compare theoretical results with numerical simulations.Comment: 13 pages, 8 figure

    Vortex Entanglement and Broken Symmetry

    Full text link
    Based on the London approximation, we investigate numerically the stability of the elementary configurations of entanglement, the twisted-pair and the twisted-triplet, in the vortex-lattice and -liquid phases. We find that, except for the dilute limit, the twisted-pair is unstable and hence irrelevant in the discussion of entanglement. In the lattice phase the twisted-triplet constitutes a metastable, confined configuration of high energy. Loss of lattice symmetry upon melting leads to deconfinement and the twisted-triplet turns into a low-energy helical configuration.Comment: 4 pages, RevTex, 2 figures on reques

    Local mapping of dissipative vortex motion

    Full text link
    We explore, with unprecedented single vortex resolution, the dissipation and motion of vortices in a superconducting ribbon under the influence of an external alternating magnetic field. This is achieved by combing the phase sensitive character of ac-susceptibility, allowing to distinguish between the inductive-and dissipative response, with the local power of scanning Hall probe microscopy. Whereas the induced reversible screening currents contribute only inductively, the vortices do leave a fingerprint in the out-of-phase component. The observed large phase-lag demonstrates the dissipation of vortices at timescales comparable to the period of the driving force (i.e. 13 ms). These results indicate the presence of slow microscopic loss mechanisms mediated by thermally activated hopping transport of vortices between metastable states.Comment: 5 pages, 2 figure

    Depinning transition of dislocation assemblies: pileup and low-angle grain boundary

    Get PDF
    We investigate the depinning transition occurring in dislocation assemblies. In particular, we consider the cases of regularly spaced pileups and low angle grain boundaries interacting with a disordered stress landscape provided by solute atoms, or by other immobile dislocations present in non-active slip systems. Using linear elasticity, we compute the stress originated by small deformations of these assemblies and the corresponding energy cost in two and three dimensions. Contrary to the case of isolated dislocation lines, which are usually approximated as elastic strings with an effective line tension, the deformations of a dislocation assembly cannot be described by local elastic interactions with a constant tension or stiffness. A nonlocal elastic kernel results as a consequence of long range interactions between dislocations. In light of this result, we revise statistical depinning theories and find novel results for Zener pinning in grain growth. Finally, we discuss the scaling properties of the dynamics of dislocation assemblies and compare theoretical results with numerical simulations.Comment: 13 pages, 8 figure

    Low field vortex dynamics over seven time decades in a Bi_2Sr_2CaCu_2O_{8+\delta} single crystal for temperatures 13 K < T < 83 K

    Full text link
    Using a custom made dc-SQUID magnetometer, we have measured the time relaxation of the remanent magnetization M_rem of a Bi_2Sr_2CaCu_2O_{8+\delta} single crystal from the fully critical state for temperatures 13 K < T < 83 K. The measurements cover a time window of seven decades 10^{-2} s < t < 10^5 s, so that the current density j can be studied from values very close to j_c down to values considerably smaller than j_c. From the data we have obtained: (i) the flux creep activation barriers U as a function of current density j, (ii) the current-voltage characteristics E(j) in a typical range of 10^{-7} V/cm to 10^{-15} V/cm, and (iii) the critical current density j_c(0) at T = 0. Three different regimes of vortex dynamics are observed: For temperatures T < 20 K the activation barrier U(j) is logarithmic, no unique functional dependence U(j) could be found for the intermediate temperature interval 20 K < T < 40 K, and finally for T > 40 K the activation barrier U(j) follows a power-law behavior with an exponent mu = 0.6. From the analysis of the data within the weak collective pinning theory for strongly layered superconductors, it is argued that for temperatures T < 20 K pancake-vortices are pinned individually, while for temperatures T > 40 K pinning involves large collectively pinned vortex bundles. A description of the vortex dynamics in the intermediate temperature interval 20 K < T < 40 K is given on the basis of a qualitative low field phase diagram of the vortex state in Bi_2Sr_2CaCu_2O_{8+\delta}. Within this description a second peak in the magnetization loop should occur for temperatures between 20 K and 40 K, as it has been observed in several magnetization measurements in the literature.Comment: 12 pages, 10 figure

    Elasticity-driven interaction between vortices in type-II superconductors

    Full text link
    The contribution to the vortex lattice energy which is due to the vortex-induced strains is calculated covering all the magnetic field range which defines the vortex state. This contribution is compared with previously reported ones what shows that, in the most part of the vortex state, it has been notably underestimated until now. The reason of such underestimation is the assumption that only the vortex cores induce strains. In contrast to what is generally assumed, both core and non-core regions are important sources of strains in high-κ\kappa superconductors.Comment: 10 pages, 1 figure, revtex

    Topological Defects in the Abrikosov Lattice of Vortices in Type-II Superconductors

    Full text link
    The free energy costs for various defects within an Abrikosov lattice of vortices are calculated using the lowest Landau level approximation (LLL). Defect solutions with boundary conditions for lines to meet at a point (crossing defect) and for lines to twist around each other (braid defect) are sought for 2, 3, 6, and 12 lines. Many results have been unexpected, including the nonexistence of a stable two- or three-line braid. This, and the high energy cost found for a six-line braid lead us to propose that the equilibrium vortex state is not entangled below the irreversibility line of the high-TcT_c superconductors or in a large part of the vortex-liquid phase above this line. Also, the solution for an infinite straight screw dislocation is found, and used to give a limiting form for the free energy cost of very large braids. This depends on the area enclosed by the braid as well as its perimeter length.Comment: 30 pages, 17 Encapsulated PostScript figures, uses Revtex (with epsf

    Campbell Penetration Depth of a Superconductor in the Critical State

    Full text link
    The magnetic penetration depth λ(T,H,j)\lambda(T,H,j) was measured in the presence of a slowly relaxing supercurrent, jj. In single crystal Bi2Sr2CaCu2O8\mathrm{Bi_2Sr_2CaCu_2O_8} below approximately 25 K, λ(T,H,j)\lambda(T,H,j) is strongly hysteretic. We propose that the irreversibility arises from a shift of the vortex position within its pinning well as jj changes. The Campbell length depends upon the ratio j/jcj/j_{c} where jcj_{c} is the critical current defined through the Labusch parameter. Similar effects were observed in other cuprates and in an organic superconductor

    Exact Solution for the Critical State in Thin Superconductor Strips with Field Dependent or Anisotropic Pinning

    Full text link
    An exact analytical solution is given for the critical state problem in long thin superconductor strips in a perpendicular magnetic field, when the critical current density j_c(B) depends on the local induction B according to a simple three-parameter model. This model describes both isotropic superconductors with this j_c(B) dependence, but also superconductors with anisotropic pinning described by a dependence j_c(theta) where theta is the tilt angle of the flux lines away from the normal to the specimen plane
    corecore