21,474 research outputs found

    Stopping distance for high energy jets in weakly-coupled quark-gluon plasmas

    Full text link
    We derive a simple formula for the stopping distance for a high-energy quark traveling through a weakly-coupled quark gluon plasma. The result is given to next-to-leading-order in an expansion in inverse logarithms ln(E/T), where T is the temperature of the plasma. We also define a stopping distance for gluons and give a leading-log result. Discussion of stopping distance has a theoretical advantage over discussion of energy loss rates in that stopping distances can be generalized to the case of strong coupling, where one may not speak of individual partons.Comment: 20 pages, 4 figures [change from v1: fixed embarrassing reference error

    Three-dimensional Roton-Excitations and Supersolid formation in Rydberg-excited Bose-Einstein Condensates

    Full text link
    We study the behavior of a Bose-Einstein condensate in which atoms are weakly coupled to a highly excited Rydberg state. Since the latter have very strong van der Waals interactions, this coupling induces effective, nonlocal interactions between the dressed ground state atoms, which, opposed to dipolar interactions, are isotropically repulsive. Yet, one finds partial attraction in momentum space, giving rise to a roton-maxon excitation spectrum and a transition to a supersolid state in three-dimensional condensates. A detailed analysis of decoherence and loss mechanisms suggests that these phenomena are observable with current experimental capabilities.Comment: 4 pages, 5 figure

    Equilibrium topology of the intermediate state in type-I superconductors of different shapes

    Full text link
    High-resolution magneto-optical technique was used to analyze flux patterns in the intermediate state of bulk Pb samples of various shapes - cones, hemispheres and discs. Combined with the measurements of macroscopic magnetization these results allowed studying the effect of bulk pinning and geometric barrier on the equilibrium structure of the intermediate state. Zero-bulk pinning discs and slabs show hysteretic behavior due to geometric barrier that results in a topological hysteresis -- flux tubes on penetration and lamellae on flux exit. (Hemi)spheres and cones do not have geometric barrier and show no hysteresis with flux tubes dominating the intermediate field region. It is concluded that flux tubes represent the equilibrium topology of the intermediate state in reversible samples, whereas laminar structure appears in samples with magnetic hysteresis (either bulk or geometric). Real-time video is available in http://www.cmpgroup.ameslab.gov/supermaglab/video/Pb.html NOTE: the submitted images were severely downsampled due to Arxiv's limitations of 1 Mb total size

    Semiclassical Expansions, the Strong Quantum Limit, and Duality

    Full text link
    We show how to complement Feynman's exponential of the action so that it exhibits a Z_2 duality symmetry. The latter illustrates a relativity principle for the notion of quantum versus classical.Comment: 5 pages, references adde

    Monte Carlo simulations of the Ising and the Sznajd model on growing Barabasi - Albert networks

    Full text link
    The Ising model shows on growing Barabasi - Albert networks the same ferromagnetic behavior as on static Barabasi - Albert networks. Sznajd models on growing Barabasi - Albert networks show an hysteresis like behavior. Nearly a full consensus builds up and the winning opinion depends on history. On slow growing Barabasi - Albert networks a full consensus builds up. At five opinions in the Sznajd model with limited persuasion on growing Barabasi - Albert networks, all odd opinions win and all even opinions loose supporters.Comment: 6 pages including 3 figures, for IJMP
    corecore