524 research outputs found
Synthesis and antibacterial properties of a hybrid of silver-potato starch nanocapsules by miniemulsion/polyaddition polymerization
A new approach for crystallization of copper(II) oxide hollow nanostructures with superior catalytic and magnetic response
Proline‐Functionalized Magnetic Nanoparticles as Highly Performing Asymmetric Catalysts
Special Issue: Celebrating 40 Years of Max Planck Institute for Polymer Research Main
Cellular Uptake of siRNA-Loaded Nanocarriers to Knockdown PD-L1: Strategies to Improve T-cell Functions
T-cells are a type of lymphocyte (a subtype of white blood cells) that play a central role in cell-mediated immunity. Currently, adoptive T-cell immunotherapy is being developed to destroy cancer cells. In this therapy, T-cells are harvested from a patient’s blood. After several weeks of growth in culture, tumor-specific T-cells can be reinfused into the same cancer patient. This technique has proved highly efficient in cancer treatment. However, there are several biological processes that can suppress the anti-cancer responses of T-cells, leading to a loss of their functionality and a reduction of their viability. Therefore, strategies are needed to improve T-cell survival and their functions. Here, a small interfering RNA (siRNA)-loaded nanocarrier was used to knockdown PD-L1, one of the most important proteins causing a loss in the functionality of T-cells. The biocompatibility and the cellular uptake of siRNA-loaded silica nanocapsules (SiNCs) were investigated in CD8+ T-cells. Then, the PD-L1 expression at protein and at mRNA levels of the treated cells were evaluated. Furthermore, the effect of the PD-L1 knockdown was observed in terms of cell proliferation and the expression of specific biomarkers CD25, CD69 and CD71, which are indicators of T-cell functions. The results suggest that this siRNA-loaded nanocarrier showed a significant potential in the delivery of siRNA into T-cells. This in turn resulted in enhanced T-cell survival by decreasing the expression of the inhibitory protein PD-L1. Such nanocarriers could, therefore, be applied in adoptive T-cell immunotherapy for the treatment of cancer
Accumulation of the photonic energy of the deep-red part of the terrestrial sun irradiation by rare-earth metal-free E-Z photoisomerization
Nanoscale Control of the Surface Functionality of Polymeric 2D Materials
Typically, 2D nanosheets have a homogeneous surface, making them a major challenge to structure. This study proposes a novel concept of 2D organic nanosheets with a heterogeneously functionalized surface. This work achieves this by consecutively crystallizing two precisely synthesized polymers with different functional groups in the polymer backbone in a two-step process. First, the core platelet is formed and then the second polymer is crystallized around it. As a result, the central area of the platelets has a different surface functionality than the periphery. This concept offers two advantages: the resulting polymeric 2D platelets are stable in dispersion, which simplifies further processing and makes both crystal surfaces accessible for subsequent functionalization. Additionally, a wide variety of polymers can be used, making the process and the choice of surface functionalization very flexible.</p
Heterogeneous photoredox flow chemistry for the scalable organosynthesis of fine chemicals
PEG Spacer Length Substantially Affects Antibody-Based Nanocarrier Targeting of Dendritic Cell Subsets
Successful cell targeting depends on the controlled positioning of cell-type-specific antibodies on the nanocarrier’s (NC) surface. Uncontrolled antibody immobilization results in unintended cell uptake due to Fc-mediated cell interaction. Consequently, precise immobilization of the Fc region towards the nanocarrier surface is needed with the Fab regions staying freely accessible for antigen binding. Moreover, the antibody needs to be a certain distance from the nanocarrier surface, influencing the targeting performance after formation of the biomolecular corona. This can be achieved by using PEG linker molecules. Here we demonstrate cell type-specific targeting for dendritic cells (DC) as cellular key regulators of immune responses. However, to date, dendritic cell targeting experiments using different linker lengths still need to be conducted. Consequently, we focused on the surface modification of nanocarriers with different molecular weight PEG linkers (0.65, 2, and 5 kDa), and their ability to reduce undesired cell uptake, while achieving efficient DC targeting via covalently immobilized antibodies (stealth targeting). Our findings demonstrate that the PEG linker length significantly affects active dendritic cell targeting from cell lines (DC2.4) to primary cells (BMDCs, splenocytic conventional DCs type 1 (cDC1)). While antibody-functionalized nanocarriers with a shorter PEG length (0.65 kDa) showed the best targeting in DC2.4, a longer PEG length (5 kDa) was required to specifically accumulate in BMDCs and splenocytic cDC1. Our study highlights that these crucial aspects must be considered when targeting dendritic cell subsets, which are of great importance in the fields of cancer immunotherapy and vaccine development
Processing and adjusting the hydrophilicity of poly(oxymethylene) (co)polymers: nanoparticle preparation and film formation
Handling the insoluble POM: the preparation of organic and aqueous nanoparticle dispersions based on poly(oxymethylene) copolymers and their film formation is described.</p
- …
