425 research outputs found
Rheological Chaos in a Scalar Shear-Thickening Model
We study a simple scalar constitutive equation for a shear-thickening
material at zero Reynolds number, in which the shear stress \sigma is driven at
a constant shear rate \dot\gamma and relaxes by two parallel decay processes: a
nonlinear decay at a nonmonotonic rate R(\sigma_1) and a linear decay at rate
\lambda\sigma_2. Here \sigma_{1,2}(t) =
\tau_{1,2}^{-1}\int_0^t\sigma(t')\exp[-(t-t')/\tau_{1,2}] {\rm d}t' are two
retarded stresses. For suitable parameters, the steady state flow curve is
monotonic but unstable; this arises when \tau_2>\tau_1 and
0>R'(\sigma)>-\lambda so that monotonicity is restored only through the
strongly retarded term (which might model a slow evolution of material
structure under stress). Within the unstable region we find a period-doubling
sequence leading to chaos. Instability, but not chaos, persists even for the
case \tau_1\to 0. A similar generic mechanism might also arise in shear
thinning systems and in some banded flows.Comment: Reference added; typos corrected. To appear in PRE Rap. Com
PANIC: the new panoramic NIR camera for Calar Alto
PANIC is a wide-field NIR camera, which is currently under development for
the Calar Alto observatory (CAHA) in Spain. It uses a mosaic of four Hawaii-2RG
detectors and covers the spectral range from 0.8-2.5 micron(z to K-band). The
field-of-view is 30x30 arcmin. This instrument can be used at the 2.2m
telescope (0.45arcsec/pixel, 0.5x0.5 degree FOV) and at the 3.5m telescope
(0.23arcsec/pixel, 0.25x0.25 degree FOV). The operating temperature is about
77K, achieved by liquid Nitrogen cooling. The cryogenic optics has three flat
folding mirrors with diameters up to 282 mm and nine lenses with diameters
between 130 mm and 255 mm. A compact filter unit can carry up to 19 filters
distributed over four filter wheels. Narrow band (1%) filters can be used. The
instrument has a diameter of 1.1 m and it is about 1 m long. The weight limit
of 400 kg at the 2.2m telescope requires a light-weight cryostat design. The
aluminium vacuum vessel and radiation shield have wall thicknesses of only 6 mm
and 3 mm respectively.Comment: This paper has been presented in the SPIE of Astronomical Telescopes
and Instrumentation 2008 in Marseille (France
GRAVITY: getting to the event horizon of Sgr A*
We present the second-generation VLTI instrument GRAVITY, which currently is
in the preliminary design phase. GRAVITY is specifically designed to observe
highly relativistic motions of matter close to the event horizon of Sgr A*, the
massive black hole at center of the Milky Way. We have identified the key
design features needed to achieve this goal and present the resulting
instrument concept. It includes an integrated optics, 4-telescope, dual feed
beam combiner operated in a cryogenic vessel; near infrared wavefront sensing
adaptive optics; fringe tracking on secondary sources within the field of view
of the VLTI and a novel metrology concept. Simulations show that the planned
design matches the scientific needs; in particular that 10 microarcsecond
astrometry is feasible for a source with a magnitude of K=15 like Sgr A*, given
the availability of suitable phase reference sources.Comment: 13 pages, 11 figures, to appear in the conference proceedings of SPIE
Astronomical Instrumentation, 23-28 June 2008, Marseille, Franc
Black Hole Mass Estimates Based on CIV are Consistent with Those Based on the Balmer Lines
Using a sample of high-redshift lensed quasars from the CASTLES project with
observed-frame ultraviolet or optical and near-infrared spectra, we have
searched for possible biases between supermassive black hole (BH) mass
estimates based on the CIV, Halpha and Hbeta broad emission lines. Our sample
is based upon that of Greene, Peng & Ludwig, expanded with new near-IR
spectroscopic observations, consistently analyzed high S/N optical spectra, and
consistent continuum luminosity estimates at 5100A. We find that BH mass
estimates based on the FWHM of CIV show a systematic offset with respect to
those obtained from the line dispersion, sigma_l, of the same emission line,
but not with those obtained from the FWHM of Halpha and Hbeta. The magnitude of
the offset depends on the treatment of the HeII and FeII emission blended with
CIV, but there is little scatter for any fixed measurement prescription. While
we otherwise find no systematic offsets between CIV and Balmer line mass
estimates, we do find that the residuals between them are strongly correlated
with the ratio of the UV and optical continuum luminosities. Removing this
dependency reduces the scatter between the UV- and optical-based BH mass
estimates by a factor of approximately 2, from roughly 0.35 to 0.18 dex. The
dispersion is smallest when comparing the CIV sigma_l mass estimate, after
removing the offset from the FWHM estimates, and either Balmer line mass
estimate. The correlation with the continuum slope is likely due to a
combination of reddening, host contamination and object-dependent SED shapes.
When we add additional heterogeneous measurements from the literature, the
results are unchanged.Comment: Accepted for publication in The Astrophysical Journal. 37 text pages
+ 8 tables + 23 figures. Updated with comments by the referee and with a
expanded discussion on literature data including new observation
An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status
MATISSE is the second-generation mid-infrared spectrograph and imager for the
Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric
instrument will allow significant advances by opening new avenues in various
fundamental research fields: studying the planet-forming region of disks around
young stellar objects, understanding the surface structures and mass loss
phenomena affecting evolved stars, and probing the environments of black holes
in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the
spectral domain of current optical interferometers by offering the L and M
bands in addition to the N band. This will open a wide wavelength domain,
ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band)
/ 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared
imaging - closure-phase aperture-synthesis imaging - with up to four Unit
Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE
will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we
present one of the main science objectives, the study of protoplanetary disks,
that has driven the instrument design and motivated several VLTI upgrades
(GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a
description of the signal on the detectors and an evaluation of the expected
performances. We also discuss the current status of the MATISSE instrument,
which is entering its testing phase, and the foreseen schedule for the next two
years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June
2016, 11 pages, 6 Figure
MATISSE, perspective of imaging in the mid-infrared at the VLTI
International audienceMATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory. The related science case study demonstrates the enormous capability of a new generation mid-infrared beam combiner. MATISSE will constitute an evolution of the two-beam interferometric instrument MIDI. MIDI is a very successful instrument which offers a perfect combination of spectral and angular resolution. New characteristics present in MATISSE will give access to the mapping and the distribution of the material (typically dust) in the circumstellar environments by using a wide mid-infrared band coverage extended to L, M and N spectral bands. The four beam combination of MATISSE provides an efficient UV-coverage : 6 visibility points are measured in one set and 4 closure phase relations which can provide aperture synthesis images in the mid-infrared spectral regime
Auswirkung von Droplegs auf Belagsbildung und Wirkung von Pflanzenschutzmaßnahmen in Gemüsekulturen
Recommended from our members
Detection of fractures of hand and forearm in whole-body CT for suspected polytrauma in intubated patients
Background: The aim of this study was to evaluate the potential of whole-body CT for diagnosis of hand and forearm fractures in intubated patients with suspected polytrauma. Methods: We performed a retrospective analysis on data collected from two trauma centres in Germany, including demographics, ISS, clinical symptoms, depiction in whole-body CT, and time to diagnosis. Results: Out of 426 patients included in the study, 66 (15.5%) suffered a hand or forearm fracture. The total number of fractures was 132, the whole-body CT report mentioned 98 (74.2%). 16 (12,1%) fractures of 12 patients were diagnosed later than 24 h after admission. Late diagnoses of fractures of the hand occurred more often if the hand was not fully included in the CT scan field. The sensitivity of whole-body CT for cases with fractures of hand and/or forearm with full inclusion of the corresponding area in the scan field was 80.2%. Conclusions: This study shows that whole-body CT is a valuable diagnostic tool for hand fractures in polytrauma patients. Hands should be evaluated regardless of clinical presentation in intubated patients after suspected polytrauma if they are included in the whole-body CT. © 2020 The Author(s)
- …
