4,667 research outputs found
Settling of bentonite in gelatine solutions
New Zealand has a sizeable meat by-products processing industry, associated with significant aqueous effluent called stickwater. Stickwater has a biological oxygen demand of 50-150 g O₂/l and has to be treated prior to disposal. Currently, stickwater is dried and added to meat and bone meal in some inedible meat rendering plants. In edible rendering plants, the gelatin can be removed and the remaining broth is concentrated as a flavor enhancer. Where no further unit operations are carried out on stickwater, the stickwater must be treated to reduce the BOD. A medium size meat rendering plant in NZ can produce up to 30,000 L of stickwater at 2-5% solids
per day¹. In Hamilton, waste water treatment costs NZ1350 per day. In comparison, abattoir waste treatment costs NZ$ 0.23/kg in the US.
Processing peracetic acid treated bloodmeal into bioplastic
Renewable and biodegradable bioplastics can be produced from biopolymers such as proteins. Animal blood is a by-product from meat processing and is rich in protein. It is dried into low value bloodmeal and is used as animal feed or fertiliser. Previous work has shown that bloodmeal can be converted into a thermoplastic using water, urea, sodium dodecyl sulphate (SDS), sodium sulphite and triethylene glycol (TEG). To increase its range of applications and acceptance from consumers, the colour and odour was removed from bloodmeal using peracetic acid (PAA). The aim of this study was to investigate the bioplastic processing of 3-5% (w/w) PAA treated bloodmeal.
3-5% PAA treated bloodmeal powder was compression moulded using different combinations of water, TEG, glycerol, SDS, sodium sulphite, urea, borax, salt and sodium silicate at concentrations up to 60 parts per hundred bloodmeal (pphBM). Partially consolidated extrudates and fully consolidated compression moulded sheets were obtained using a combination of water, TEG and SDS. 4% PAA treated bloodmeal produced the best compression moulded sheets and extrudates and was chosen for investigating the effects of water, TEG and SDS concentration on consolidation, specific mechanical energy input (SME) and product colour during extrusion.
Analysis of variance (ANOVA) showed SDS was the most important factor influencing its ability to be extruded because it detangled protein chains and allowed them to form new stabilising interactions required for consolidation. The best extruded sample, which was 98% consolidated and 49% white, contained 40 pphBM water, 10 pphBM TEG and 6 pphBM SDS
Decolouring bloodmeal: Consumption and potential recycling of peracetic acid
A method of deodorizing and decolouring bloodmeal using an equilibrium mixture of peracetic acid, hydrogen peroxide, acetic acid and water has been developed to improve its marketability as a source of protein for bioplastics.
The objective of this study was to determine what quantity of peracetic acid is required to give reasonable bleaching of the bloodmeal and determine whether there is potential for the wastewater to be recycled. This was carried out by measuring the quantity of chemical species in the initial equilibrium mixture and the resulting wastewater upon bleaching using volumetric analysis. Bleaching efficacy was determined after exposing 100 g bloodmeal to 1.1, 2.5, 3.6, 4.5 and 5.6 wt% peracetic acid solutions as either 300 g total solution or a constant molar equivalent of 2.2 mmol peracetic acid/g bloodmeal and using a chromameter to measure colour change.
Addition of 300 g 5.6 wt% peracetic acid solution resulted in effective bleaching. This represented a ratio of 2.20 mmol peracetic acid/g bloodmeal of which 1.4 mmol peracetic acid/g bloodmeal was consumed (63%). If 300 g 300 g of <2.5 wt% solution is added such that there is still 2.2 mmol peracetic acid/g bloodmeal, bleaching is still insufficient.
These results suggest that an excess of peracetic is required for bleaching to occur, and that its concentration is paramount to bleaching efficacy. Due to the excess of peracetic acid used in the bleaching process, there is potential for wastewater recycling to be carried out provided that the wastewater is not diluted
Effect of oxidative treatment on the secondary structure of decoloured bloodmeal
Bloodmeal can be decoloured using peracetic acid resulting in a material with a pale-yellow colour which only needs sodium dodecyl sulphate, water and triethylene glycol to extrude into a semi-transparent bioplastic. Fourier-transform infrared (FTIR) spectroscopy using Synchrotron light was used to investigate the effect of peracetic acid treatment at various concentrations on the spatial distribution of secondary structures within particles of bloodmeal. Oxidation caused aggregation of helical structures into sheets and acetic acid suppressed sheet formation. Decolouring with peracetic acid led to particles with a higher degree of disorder at the outer edges and higher proportions of ordered structures at the core, consistent with the expected diffusion controlled heterogeneous phase decolouring reaction. The degradation of stabilizing intra- and intermolecular interactions and the presence of acetate ions results in increased chain mobility and greater amorphous content in the material, as evidenced by reduction in Tg and greater enthalpy of relaxation with increasing PAA concentration
Fish powder as a low-cost component in media for producing bacterial cellulose
Some bacteria can produce extracellular bacterial cellulose (BC). This polysaccharide is chemically identical to cellulose produced by plants but has no associated lignin and hemicelluloses. The unique mechanical properties, chemical stability and purity allow BC to be exploited for a range of biomedical applications. However, medium costs limit commercial BC production. The suitability of using fish powder as a low-cost media component for producing BC by submerged culture of Gluconacetobacter xylinus in shake flasks was investigated. Fish powder was made by drying and grinding Koi carp (Cyprinus carpio), a pest fish in New Zealand waterways. Fermentations were done at 30oC in a growth medium containing 50 g/L glucose, the required minerals, and either 5 g/L yeast extract or 15 g/L fish powder, The BC yield on both yeast extract and fish powder was 0.04 g/g glucose, demonstrating fish powder was a suitable low cost ingredient for supplying nitrogen and amino acids in the media
Semiquantitative Infrared Analysis of Diketones and Anhydrides in a Reaction Mixture
The ozonolysis of a hydroxymethylene ketone yields a mixture of diketone and anhydride. Treatment of hydroxymethylene camphor with ozone affords, in addition to the expected camphor quinone, a surprisingly large amount of camphoric anhydride (56%) via Baeyer-Villager reaction. Use of infrared absorption to analyze the relative amounts of camphor quinone and camphoric anhydride in a reaction mixture was studied by comparing peak heights of their carbonyl stretching bands
Co‐operative cross‐platform courseware development
The UKMCC (UK Mathematics Courseware Consortium) is a Consortium funded under TLTP (Training and Learning Technology Programme) to produce courseware for service mathematics teaching, using the SEFI (Société Européenne pour la Formation des Ingénieurs) syllabus. There are agreed courseware design guidelines and a simple courseware management system which allows cross‐referencing. Courseware is divided into modules, with an author as implementer for each. On any one hardware platform, a variety of authoring languages is possible. Across hardware platforms, the design guidelines ensure that conversion is possible, and will preserve look and feel. We argue here that these arrangements provide a basis for continued co‐operation between authors and future development as the technology changes
Equilibrium and dynamic moisture adsorption behaviour of bloodmeal based bioplastic
Bioplastics can be manufactured from protein or carbohydrate sources such as wheat gluten, corn, sun flower, keratin, casein, soy, gelatine and whey. A recently developed bioplastic is Novatein thermoplastic (NTP), which is produced from bloodmeal by adding water, urea, sodium sulphite, sodium dodecyl sulphate and tri-ethylene glycol (TEG), allowing it to be extruded and injection moulded. Bioplastics, compared to their petroleum counterparts, can readily adsorb or lose water, which then changes their physical properties such as tensile strength and glass transition temperature. NTP at different TEG and water contents was exposed to 20-85% relative humidity (RH) environments and change in mass recorded over 35 days to determine equilibrium and dynamic moisture adsorption behavior. Equilibrium behavior was modelled using modified Freundlich and Langmuir- Freundlich isotherms, and dynamic behavior modelled using Pilosof, Singh- ulshrestha, exponential, Langmuir-Freundlich and simple rate equations. Excellent fits were obtained for both isotherms and the last three rate equations gave best overall fits for dynamics. NTP adsorbed up to 28% by weight in water at 85% RH, reaching equilibrium within 20 days. Plastics with high TEG had a greater affinity for water but lower water adsorption rates, while dry plastic samples had a lower adsorption rate than wet samples. The two parameter Freundlich model and the exponential or simple rate model is recommended for modelling NTP equilibrium and dynamic water adsorption
Plasticization of Bloodmeal-based Thermoplastics
Water is the most common plasticizer for proteinbased thermoplastics, lowering the softening point to a allow processing without excessive degradation. The biggest drawback of using water a plasticizer is that water easily evaporates from the material during use or storage. This leads to embrittlement and loss of functionality over time. In this study a series of high molecular mass plasticizers were evaluated for their efficiency in plasticizing bloodmeal-based thermoplastics. It was found that propylene glycol, di and tri-ethylene glycol were most efficient in increasing the material’s ductility, as measured by elongation at break. Using 10 parts plasticizer per hundred bloodmeal (pphBM) in combination with 10 pphBM urea gave optimal results in terms of Young’s modulus, tensile strength and processability. The mechanical properties of plasticized samples showed a stronger dependency on moisture content, compared to unplasticized samples and reached higher equilibrium moisture content in a shorter time. Using 10 pphBM TEG as plasticizer in resulted in a plastic material with a Young’s modulus of 869 MPa, tensile strength of 14.7 MPa and an elongation at break of 46%
Structural characterisation of pre-processed thermoplastic protein derived from bloodmeal
Additives are required to convert bloodmeal powder into an extrudable thermoplastic protein-based bioplastic. These include a protein denaturant, a surfactant, a reducing agent and plasticisers. The objective of this work was to assess the structural changes induced in bloodmeal by these additives prior to extrusion. Structure was investigated using Fourier transform infrared (FT-IR) spectroscopy, wide angle X-ray scattering (WAXS) and synchrotron light based FT-IR microspectroscopy.
FT-IR results suggested the additives reduced α-helical content. The shape of the amide I region (1600 – 1700 cm⁻¹, representing carbonyl group stretching in the protein backbone) is known to depend on protein secondary structures. Bloodmeal showed a broad, convoluted peak in this region, with a maximum in the range 1648 – 1658 cm⁻¹, associated with α-helices. With processing additives, a dip was seen in the α-helix region, with twin peaks emerging either side of it. Urea, one of the additives, also absorbs in the amide I region and may also contribute to a change in its shape. Analysis of the amide 3 region supported a reduction in the ratio of α helices to β sheets. Further support of structural changes was shown by WAXS. The additives decreased the sharpness of peaks corresponding to 4.8 Å and 10 Å, thought to represent intra-helix spacing and inter-helix packing respectively.
FT-IR microspectroscopy at the Australian Synchrotron enabled spatial variations in secondary structure to be explored using peaks in the amide 3 region. Spatial distribution of secondary structure was detected in bloodmeal and thermoplastically modified bloodmeal prior to extrusion (PPM-TEG). Bloodmeal showed domain separation on the approximate order of 10 μm, whilst PPM-TEG appeared to have larger phases and overall reduced α-helical content, relative to beta sheets
- …
