777 research outputs found

    Understanding the magnetic polarizability tensor

    Get PDF
    The aim of this paper is to provide new insights into the properties of the rank 2 polarizability tensor M̆ proposed by Ledger and Lionheart for describing the perturbation in the magnetic field caused by the presence of a conducting object in the eddy-current regime. In particular, we explore its connection with the magnetic polarizability tensor and the Pólya-Szegö tensor and how, by introducing new splittings of M̆, they form a family of rank 2 tensors for describing the response from different categories of conducting (permeable) objects. We include new bounds on the invariants of the Pólya-Szegö tensor and expressions for the low-frequency and high-conductivity limiting coefficients of M̆. We show, for the high-conductivity case (and for frequencies at the limit of the quasi-static approximation), that it is important to consider whether the object is simply or multiply connected but, for the low-frequency case, the coefficients are independent of the connectedness of the object. Furthermore, we explore the frequency response of the coefficients of M̆ for a range of simply and multiply connected objects

    Characterizing the shape and material properties of hidden targets from magnetic induction data

    Get PDF
    The aim of this paper is to show that, for the eddy current model, the leading order term for the perturbation in the magnetic field, due to the presence of a small conducting magnetic inclusion, can be expressed in terms of a symmetric rank 2 polarization tensor. This tensor contains information about the shape and material properties of the object and is independent of position. We apply a recently derived asymptotic formula for the perturbed magnetic field, due to the presence of a conducting inclusion, which is expressed in terms of a new class of rank 4 polarization tensors (Ammari, H., Chen, J., Chen, Z., Garnier, J. & Volkov, D. (2014) Target detection and characterization from electromagnetic induction data. J. Math. Pures Appl., 101, 54–75.) and show that their result can be written in an alternative form involving a symmetric rank 2 tensor involving 6 instead of 81 complex components in an orthonormal coordinate frame. For objects with rotational and mirror symmetries we show that the number of coefficients is still smaller. We include numerical examples to demonstrate that the new polarization tensors can be accurately computed by solving a vector-valued transmission problem by hp-finite elements and include examples to illustrate the agreement between the asymptotic formula describing the perturbed fields and the numerical predictions

    The effects of climatic fluctuations and extreme events on running water ecosystems

    Get PDF
    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world

    D'atri spaces of type k and related classes of geometries concerning jacobi operators

    Get PDF
    In this article we continue the study of the geometry of kk-D'Atri spaces, % 1\leq k n1\leq n-1 (nn denotes the dimension of the manifold),, began by the second author. It is known that kk-D'Atri spaces, k1,k\geq 1, are related to properties of Jacobi operators RvR_{v} along geodesics, since she has shown that trRv{\operatorname{tr}}R_{v}, trRv2{\operatorname{tr}}R_{v}^{2} are invariant under the geodesic flow for any unit tangent vector vv. Here, assuming that the Riemannian manifold is a D'Atri space, we prove in our main result that trRv3{\operatorname{tr}}R_{v}^{3} is also invariant under the geodesic flow if k3 k\geq 3. In addition, other properties of Jacobi operators related to the Ledger conditions are obtained and they are used to give applications to Iwasawa type spaces. In the class of D'Atri spaces of Iwasawa type, we show two different characterizations of the symmetric spaces of noncompact type: they are exactly the C\frak{C}-spaces and on the other hand they are kk -D'Atri spaces for some k3.k\geq 3. In the last case, they are kk-D'Atri for all k=1,...,n1k=1,...,n-1 as well. In particular, Damek-Ricci spaces that are kk-D'Atri for some k3k\geq 3 are symmetric. Finally, we characterize kk-D'Atri spaces for all k=1,...,n1k=1,...,n-1 as the SC% \frak{SC}-spaces (geodesic symmetries preserve the principal curvatures of small geodesic spheres). Moreover, applying this result in the case of 4% -dimensional homogeneous spaces we prove that the properties of being a D'Atri (1-D'Atri) space, or a 3-D'Atri space, are equivalent to the property of being a kk-D'Atri space for all k=1,2,3k=1,2,3.Comment: 19 pages. This paper substitute the previous one where one Theorem has been deleted and one section has been adde

    Comparison of Bacterial Diversity within the Coral Reef Sponge, Axinella corrugata, and the Encrusting Coral Erythropodium caribaeorum

    Get PDF
    We compared the Caribbean reef sponge, Axinella corrugata, with the Caribbean reef coral, Erythropodium caribaeorum for differences in their resident microbial communities. This cursory survey of bacterial diversity applied 16S rRNA gene sequences. Over 100 culture-independent sequences were generated from five different Axinella 16S rRNA libraries, and compared with 69 cultured isolates. The cultureindependent 16S rDNA clones displayed a higher diversity of Proteobacteria, including “uncultured” or “unknown” representatives from the Deltaproteobacteria. Arcobacterium, and Cyanobacteria were also found. We have also confirmed that Axinella sponges appeared to host specific microbial symbionts, similar to the previously identified clones termed “OSO” environmental samples. In contrast, seawater samples near Axinella were dominated by Pseudoalteromonas. Adjacent sediment samples yielded clones of Planctomycetacea, Proteobacteria, sulfate-reducing Desulfovibrio spp, and other Deltaproteobacteria. Anaerobe-like 16S rRNA sequences were detected after the oxygen supply to one Axinella sample was deliberately curtailed to assess temporal changes in the microbial community. E. caribaeorum yielded more Betaproteobacteria relative to Axinella 16S libraries, and also included the Gammaproteobacteria genus Spongiobacter. However, Axinella-derived microbes appeared phylogenetically deeper with greater sequence divergences than the coral. Overall this study indicated that marine microbial community diversity can be linked to specific source hosts and habitats

    Adjuvancy and reactogenicity of N-acetylglycosaminyl-N-acetylmuramyl-dipeptide (GMDP) orally administered just prior to trivalent influenza subunit vaccine. A double-blind placebo-controlled study in nursing home residents.

    Get PDF
    One hundred and fifty-three nursing home residents received 0, 5, 25 or 50 mg N-acetylglucosaminyl-N-acetylmuramyl-dipeptide (GMDP) orally, and trivalent influenza subunit vaccine intramuscularly. One day after intervention, there was a strong increase of total leucocytes, monocytes and neutrophils in the groups receiving 25 or 50 mg GMDP. A GMDP dose dependent increase in systemic, but not in local, vaccine side-effects was observed. No significant differences in post-vaccination haemagglutination inhibiting serum antibody titres were observed between the four groups, indicating that oral administration of GMDP together with influenza vaccination, does not lead to a higher vaccine efficacy

    Prehistory of Transit Searches

    Full text link
    Nowadays the more powerful method to detect extrasolar planets is the transit method. We review the planet transits which were anticipated, searched, and the first ones which were observed all through history. Indeed transits of planets in front of their star were first investigated and studied in the solar system. The first observations of sunspots were sometimes mistaken for transits of unknown planets. The first scientific observation and study of a transit in the solar system was the observation of Mercury transit by Pierre Gassendi in 1631. Because observations of Venus transits could give a way to determine the distance Sun-Earth, transits of Venus were overwhelmingly observed. Some objects which actually do not exist were searched by their hypothetical transits on the Sun, as some examples a Venus satellite and an infra-mercurial planet. We evoke the possibly first use of the hypothesis of an exoplanet transit to explain some periodic variations of the luminosity of a star, namely the star Algol, during the eighteen century. Then we review the predictions of detection of exoplanets by their transits, those predictions being sometimes ancient, and made by astronomers as well as popular science writers. However, these very interesting predictions were never published in peer-reviewed journals specialized in astronomical discoveries and results. A possible transit of the planet beta Pic b was observed in 1981. Shall we see another transit expected for the same planet during 2018? Today, some studies of transits which are connected to hypothetical extraterrestrial civilisations are published in astronomical refereed journals. Some studies which would be classified not long ago as science fiction are now considered as scientific ones.Comment: Submiited to Handbook of Exoplanets (Springer

    Nunalleq, Stories from the Village of Our Ancestors:Co-designing a multivocal educational resource based on an archaeological excavation

    Get PDF
    This work was funded by the UK-based Arts and Humanities Research Council through grants (AH/K006029/1) and (AH/R014523/1), a University of Aberdeen IKEC Award with additional support for travel and subsistence from the University of Dundee, DJCAD Research Committee RS2 project funding. Thank you to the many people who contributed their support, knowledge, feedback, voices and faces throughout the project, this list includes members of the local community, colleagues, specialists, students, and volunteers. If we have missed out any names we apologize but know that your help was appreciated. Jimmy Anaver, John Anderson, Alice Bailey, Kieran Baxter, Pauline Beebe, Ellinor Berggren, Dawn Biddison, Joshua Branstetter, Brendan Body, Lise Bos, Michael Broderick, Sarah Brown, Crystal Carter, Joseph Carter, Lucy Carter, Sally Carter, Ben Charles, Mary Church, Willard Church, Daniele Clementi, Annie Cleveland, Emily Cleveland, Joshua Cleveland, Aron Crowell, Neil Curtis, Angie Demma, Annie Don, Julia Farley, Veronique Forbes, Patti Fredericks, Tricia Gillam, Sean Gleason, Sven Haakanson, Cheryl Heitman, Grace Hill, Diana Hunter, Joel Isaak, Warren Jones, Stephan Jones, Ana Jorge, Solveig Junglas, Melia Knecht, Rick Knecht, Erika Larsen, Paul Ledger, Jonathan Lim Soon, Amber Lincoln, Steve Luke, Francis Lukezic, Eva Malvich, Pauline Matthews, Roy Mark, Edouard Masson-MacLean, Julie Masson-MacLean, Mhairi Maxwell, Chuna Mcintyre, Drew Michael, Amanda Mina, Anna Mossolova, Carl Nicolai Jr, Chris Niskanen, Molly Odell, Tom Paxton, Lauren Phillips, Lucy Qin, Charlie Roberts, Chris Rowe, Rufus Rowe,Chris Rowland, John Rundall, Melissa Shaginoff, Monica Shah, Anna Sloan, Darryl Small Jr, John Smith, Mike Smith, Joey Sparaga, Hannah Strehlau, Dora Strunk, Larissa Strunk, Lonny Strunk, Larry Strunk, Robbie Strunk, Sandra Toloczko, Richard Vanderhoek, the Qanirtuuq Incorporated Board, the Quinhagak Dance Group and the staff at Kuinerrarmiut Elitnaurviat. We also extend our thanks to three anonymous reviewers for their valuable comments on our paper.Peer reviewedPublisher PD

    A unified approach for a posteriori high-order curved mesh generation using solid mechanics

    Get PDF
    The paper presents a unified approach for the a posteriori generation of arbitrary high-order curvilinear meshes via a solid mechanics analogy. The approach encompasses a variety of methodologies, ranging from the popular incremental linear elastic approach to very sophisticated non-linear elasticity. In addition, an intermediate consistent incrementally linearised approach is also presented and applied for the first time in this context. Utilising a consistent derivation from energy principles, a theoretical comparison of the various approaches is presented which enables a detailed discussion regarding the material characterisation (calibration) employed for the different solid mechanics formulations. Five independent quality measures are proposed and their relations with existing quality indicators, used in the context of a posteriori mesh generation, are discussed. Finally, a comprehensive range of numerical examples, both in two and three dimensions, including challenging geometries of interest to the solids, fluids and electromagnetics communities, are shown in order to illustrate and thoroughly compare the performance of the different methodologies. This comparison considers the influence of material parameters and number of load increments on the quality of the generated high-order mesh, overall computational cost and, crucially, the approximation properties of the resulting mesh when considering an isoparametric finite element formulation
    corecore