2,444 research outputs found
Le thon : enjeux et stratégies pour l'océan Indien
Les tendances de la pêche, la transformation, et le commerce des produits thoniers sont influencés par un grand nombre de forces motrices. La pêche est fonction de la disponibilité de la ressource, de la technologie de la pêche, et des prix des intrants et des extrants. D'une manière semblable, la distribution mondiale des activités de la pêche thonière est fonction des coûts relatifs, qui sont particulièrement influencés par la disponibilité du produit brut, et le prix relatif de la main d'oeuvre. Le marché des produits thoniers est un marché mondial, et le commerce de ces produits joue un rôle important dans la détermination des prix et des quantités d'équilibre du marché de détail. La récente émergence de l'industrie de la pêche thonière dans l'océan Indien, en conjonction avec les développements dans le secteur de la transformation dans cette même région, a eu un impact important sur la distribution de la pêche et du commerce mondial du thon. (Résumé d'auteur
Bias spectroscopy and simultaneous SET charge state detection of Si:P double dots
We report a detailed study of low-temperature (mK) transport properties of a
silicon double-dot system fabricated by phosphorous ion implantation. The
device under study consists of two phosphorous nanoscale islands doped to above
the metal-insulator transition, separated from each other and the source and
drain reservoirs by nominally undoped (intrinsic) silicon tunnel barriers.
Metallic control gates, together with an Al-AlOx single-electron transistor,
were positioned on the substrate surface, capacitively coupled to the buried
dots. The individual double-dot charge states were probed using source-drain
bias spectroscopy combined with non-invasive SET charge sensing. The system was
measured in linear (VSD = 0) and non-linear (VSD 0) regimes allowing
calculations of the relevant capacitances. Simultaneous detection using both
SET sensing and source-drain current measurements was demonstrated, providing a
valuable combination for the analysis of the system. Evolution of the triple
points with applied bias was observed using both charge and current sensing.
Coulomb diamonds, showing the interplay between the Coulomb charging effects of
the two dots, were measured using simultaneous detection and compared with
numerical simulations.Comment: 7 pages, 6 figure
Coherent electronic transfer in quantum dot systems using adiabatic passage
We describe a scheme for using an all-electrical, rapid, adiabatic population
transfer between two spatially separated dots in a triple-quantum dot system.
The electron spends no time in the middle dot and does not change its energy
during the transfer process. Although a coherent population transfer method,
this scheme may well prove useful in incoherent electronic computation (for
example quantum-dot cellular automata) where it may provide a coherent
advantage to an otherwise incoherent device. It can also be thought of as a
limiting case of type II quantum computing, where sufficient coherence exists
for a single gate operation, but not for the preservation of superpositions
after the operation. We extend our analysis to the case of many intervening
dots and address the issue of transporting quantum information through a
multi-dot system.Comment: Replaced with (approximately) the published versio
Making Classical Ground State Spin Computing Fault-Tolerant
We examine a model of classical deterministic computing in which the ground
state of the classical system is a spatial history of the computation. This
model is relevant to quantum dot cellular automata as well as to recent
universal adiabatic quantum computing constructions. In its most primitive
form, systems constructed in this model cannot compute in an error free manner
when working at non-zero temperature. However, by exploiting a mapping between
the partition function for this model and probabilistic classical circuits we
are able to show that it is possible to make this model effectively error free.
We achieve this by using techniques in fault-tolerant classical computing and
the result is that the system can compute effectively error free if the
temperature is below a critical temperature. We further link this model to
computational complexity and show that a certain problem concerning finite
temperature classical spin systems is complete for the complexity class
Merlin-Arthur. This provides an interesting connection between the physical
behavior of certain many-body spin systems and computational complexity.Comment: 24 pages, 1 figur
Emergence of a confined state in a weakly bent wire
In this paper we use a simple straightforward technique to investigate the
emergence of a bound state in a weakly bent wire. We show that the bend behaves
like an infinitely shallow potential well, and in the limit of small bending
angle and low energy the bend can be presented by a simple 1D delta function
potential.Comment: 4 pages, 3 Postscript figures (uses Revtex); added references and
rewritte
Flat-band ferromagnetism in quantum dot superlattices
Possibility of flat-band ferromagnetism in quantum dot arrays is
theoretically discussed. By using a quantum dot as a building block, quantum
dot superlattices are possible. We consider dot arrays on Lieb and kagome
lattices known to exhibit flat band ferromagnetism. By performing an exact
diagonalization of the Hubbard Hamiltonian, we calculate the energy difference
between the ferromagnetic ground state and the paramagnetic excited state, and
discuss the stability of the ferromagnetism against the second nearest neighbor
transfer. We calculate the dot-size dependence of the energy difference in a
dot model and estimate the transition temperature of the
ferromagnetic-paramagnetic transition which is found to be accessible within
the present fabrication technology. We point out advantages of semiconductor
ferromagnets and suggest other interesting possibilities of electronic
properties in quantum dot superlattices.Comment: 15 pages, 7 figures (low resolution). High-resolution figures are
available at
http://www.brl.ntt.co.jp/people/tamura/Research/PublicationPapers.htm
Quantum dynamics, dissipation, and asymmetry effects in quantum dot arrays
We study the role of dissipation and structural defects on the time evolution
of quantum dot arrays with mobile charges under external driving fields. These
structures, proposed as quantum dot cellular automata, exhibit interesting
quantum dynamics which we describe in terms of equations of motion for the
density matrix. Using an open system approach, we study the role of asymmetries
and the microscopic electron-phonon interaction on the general dynamical
behavior of the charge distribution (polarization) of such systems. We find
that the system response to the driving field is improved at low temperatures
(and/or weak phonon coupling), before deteriorating as temperature and
asymmetry increase. In addition to the study of the time evolution of
polarization, we explore the linear entropy of the system in order to gain
further insights into the competition between coherent evolution and
dissipative processes.Comment: 11pages,9 figures(eps), submitted to PR
Function reconstruction as a classical moment problem: A maximum entropy approach
We present a systematic study of the reconstruction of a non-negative
function via maximum entropy approach utilizing the information contained in a
finite number of moments of the function. For testing the efficacy of the
approach, we reconstruct a set of functions using an iterative entropy
optimization scheme, and study the convergence profile as the number of moments
is increased. We consider a wide variety of functions that include a
distribution with a sharp discontinuity, a rapidly oscillatory function, a
distribution with singularities, and finally a distribution with several spikes
and fine structure. The last example is important in the context of the
determination of the natural density of the logistic map. The convergence of
the method is studied by comparing the moments of the approximated functions
with the exact ones. Furthermore, by varying the number of moments and
iterations, we examine to what extent the features of the functions, such as
the divergence behavior at singular points within the interval, is reproduced.
The proximity of the reconstructed maximum entropy solution to the exact
solution is examined via Kullback-Leibler divergence and variation measures for
different number of moments.Comment: 20 pages, 17 figure
Adsorption induced reconstruction of the Cu(110) surface
The formation of the O/Cu(110)-(2 × 1) and H/Cu(110)-(1 × 2) superstructures has been investigated by a LEED beam profile analysis. The oxygen induced reconstruction proceeds at later stages by creation of holes on flat terraces. This could not be observed at the hydrogen induced missing row reconstruction. The formation of the missing row structure proceeds most probably via nucleation at steps and subsequent growth of (1 × 2) islands. The influence of different distributions of steps and islands on beam profiles is discussed
- …
