3,731 research outputs found

    Comment on: Reply to comment on `Perfect imaging without negative refraction'

    Full text link
    Whether or not perfect imaging is obtained in the mirrored version of Maxwell's fisheye lens is debated in the comment/reply sequence [Blaikie-2010njp, Leonhardt-2010njp] discussing Leonhardt's original paper [Leonhardt-2009njp]. Here we show that causal solutions can be obtained without the need for an "active localized drain", contrary to the claims in [Leonhardt-2010njp].Comment: v2 (added MEEP ctl file), v3 (publisher statement

    Stable operation of a synchronously pumped colliding-pulse mode-locked ring dye laser

    Get PDF
    Pulses of 100-fsec duration are obtained by synchronous pumping of a colliding-pulse ring dye laser with a mode-locked Ar+-ion laser. Stable operation of the synchronously pumped colliding-pulse mode-locked laser over hours was obtained by a suitable choice of the distance between the gain and the absorber in combination with an appro-priate pump-pulse sequence. Passive mode locking of a ring dye laser by the inter-action of two counterpropagating pulses in a thin sat-urable absorber (colliding-pulse mode locking) yields femtosecond laser pulses. ' In these lasers the gain medium (Rhodamine 6G) is pumped by a cw Ar+-ion laser. The saturable absorber (DODCI, 3,3-diethyl-oxadicarbocyanine iodide) synchronizes two counter-propagating pulses meeting in the absorber jet stream. The colliding pulses form a transient grating, which synchronizes and stabilizes the pulses.2 In order to ensure equal amplification for both counterpropagatin

    Perfect imaging: they don't do it with mirrors

    Full text link
    Imaging with a spherical mirror in empty space is compared with the case when the mirror is filled with the medium of Maxwell's fish eye. Exact time-dependent solutions of Maxwell's equations show that perfect imaging is not achievable with an electrical ideal mirror on its own, but with Maxwell's fish eye in the regime when it implements a curved geometry for full electromagnetic waves

    Collimating lenses from non-Euclidean transformation optics

    Full text link
    Based on the non-Euclidean transformation optics, we design a thin metamaterial lens that can achieve wide-beam radiation by embedding a simple source (a point source in three-dimensional case or a line current source in two-dimensional case). The scheme is performed on a layer-by-layer geometry to convert curved surfaces in virtual space to flat sheets, which pile up and form the entire lens in physical space. Compared to previous designs, the lens has no extreme material parameters. Simulation results confirm its functionality.Comment: 12 pages, 6 figure

    As-received microstructure of a SiC/Ti-15-3 composite

    Get PDF
    A silicon carbide fiber reinforced titanium (Ti-15V-3Cr-3Sn-3Al) composite is metallographically examined. Several methods for examining composite materials are investigated and documented. Polishing techniques for this material are described. An interference layering method is developed to reveal the structure of the fiber, the reaction zone, and various phases within the matrix. Microprobe and transmission electron microscope (TEM) analyses are performed on the fiber/matrix interface. A detailed description of the fiber distribution as well as the microstructure of the fiber and matrix are presented

    Slow-light pulses in moving media

    Full text link
    Slow light in moving media reaches a paradoxical regime when the flow speed of the medium approaches the group velocity of light. Pulses can penetrate a region where a counter-propagating flow exceeds the group velocity. When the counter-flow slows down pulses are reflected

    Plasma etching a ceramic composite

    Get PDF
    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging

    A symmetrization technique for continuous-variable quantum key distribution

    Full text link
    We introduce a symmetrization technique which can be used as an extra step in some continuous-variable quantum key distribution protocols. By randomizing the data in phase space, one can dramatically simplify the security analysis of the protocols, in particular in the case of collective attacks. The main application of this procedure concerns protocols with postselection, for which security was established only against Gaussian attacks until now. Here, we prove that under some experimentally verifiable conditions, Gaussian attacks are optimal among all collective attacks.Comment: 7 page

    Fermat's principle of least time in the presence of uniformly moving boundaries and media

    Get PDF
    The refraction of a light ray by a homogeneous, isotropic and non-dispersive transparent material half-space in uniform rectilinear motion is investigated theoretically. The approach is an amalgamation of the original Fermat's principle and the fact that an isotropic optical medium at rest becomes optically anisotropic in a frame where the medium is moving at a constant velocity. Two cases of motion are considered: a) the material half-space is moving parallel to the interface; b) the material half-space is moving perpendicular to the interface. In each case, a detailed analysis of the obtained refraction formula is provided, and in the latter case, an intriguing backward refraction of light is noticed and thoroughly discussed. The results confirm the validity of Fermat's principle when the optical media and the boundaries between them are moving at relativistic speeds.Comment: 11 pages, 6 figures, RevTeX 4, comments welcome; V2: revised, Fig. 7 added; V3: several typos corrected, accepted for publication in European Journal of Physics (online at: http://stacks.iop.org/EJP/28/933
    corecore